
A Reference Architecture for
Push Systems

Manfred Hauswirth
M.Hauswirth@infosys.tuwien.ac.at

TUV-1841-98-05 March 16, 1998

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

Popular Internet information systems like the World-wide Web still re-
quire the user to actively locate and retrieve information which is a time-
consuming and tedious task. Push systems try to remedy this by reversing
the communication pattern: information is actively disseminated to users.
A large number of push systems is already available and these systems are
gaining wide-spread use. The purpose of this paper is to present a refer-
ence architecture for such systems. It describes the general concepts, ab-
stractions (broadcasting, channel), and components (broadcaster, receiver,
transport system) of push systems. The properties and relations of compo-
nents are presented and the main issues to be addressed by push architec-
tures are discussed: scalability, network traffic, security, and e-commerce.
Since push systems can allow executable content, the relations with mo-
bile code systems are considered. A brief discussion of existing systems in
respect to the reference architecture rounds out the paper.

Keywords: push systems, software architecture

c�1998, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-4470
fax: +43 1 5058453
URL: http://www.infosys.tuwien.ac.at/



A Reference Architecture for Push Systems�

Manfred Hauswirth
Distributed Systems Group

Technical University of Vienna
Argentinierstraße 8/184-1

A-1040 Wien, Austria
M.Hauswirth@infosys.tuwien.ac.at
http://www.infosys.tuwien.ac.at/

Abstract

Popular Internet information systems like the World-wide
Web still require the user to actively locate and retrieve
information which is a time-consuming and tedious task.
Push systems try to remedy this by reversing the commu-
nication pattern: information is actively disseminated to
users. A large number of push systems is already avail-
able and these systems are gaining wide-spread use. The
purpose of this paper is to present a reference architecture
for such systems. It describes the general concepts, ab-
stractions (broadcasting, channel), and components (broad-
caster, receiver, transport system) of push systems. The
properties and relations of components are presented and
the main issues to be addressed by push architectures are
discussed: scalability, network traffic, security, and e-
commerce. Since push systems can allow executable con-
tent, the relations with mobile code systems are considered.
A brief discussion of existing systems in respect to the ref-
erence architecture rounds out the paper.

1 Introduction

Push systems try to break up and enhance the standard pull-
based interaction pattern of the World-wide Web and ease
the process of information discovery and dissemination.
Put simple, push systems aim at providing a service similar
to TV, radio, or printed press, but enhanced with the techni-
cal capabilities of the Internet. The basic idea is the same:
users inquire a “channel guide” for available information
channels, subscribe to some of them according to their in-
terests, and then continuously get information, i.e. the pro-
cess of information acquisition changes from user-initiated
pull to provider-side push. Instead of forcing the user to
repeatedly ask for information or check whether new infor-
mation has become available the user subscribes once and
keeps receiving (see Figure 1).

�This work was supported in part by the ARES ESPRIT Project 20477.

ProducerConsumer

Reply

Subscribe

Request

Consumer Broker Producer

Publish

Figure 1: Pull vs. push [12]

The need for push systems stems from several reasons. The
most important one is that WWW is based on a simple re-
quest/reply scheme [5], [9] that requires the user to issue a
request whenever he/she needs information. This imposes
a “synchronous” interaction scheme, whereas push systems
would allow asynchronous information distribution: ide-
ally, whenever information of the user’s choice becomes
available it gets distributed. With this admittedly idealis-
tic assumptions, several key problems of the WWW can be
addressed that push systems promise to remedy1:
Locating. Currently locating information is a major prob-
lem for users. Even though good search engines exist,
the quality of information found is still proportional to the
user’s knowledge and skills (keyword selection, intuition).
Push technology promises to remedy this by the concepts
of information channels and subscription and by shifting
the active role to the information provider.
Focusing. With push systems the user is required to state
his/her preferences explicitly. Thus it is easy to provide
focused information.
Customization. The user can state requirements on the
data and its properties that are to be applied before it is
delivered, e.g. data format, priority, keywords, etc.
Freshness. Data can actively be disseminated as soon as
it becomes available. Stale data may be invalidated by the
information provider.
Tailoring. Not only the user can customize the data and
its properties but also the provider. The provider can con-
trol when the user sees which information. This decision

1This list is not comprehensive and only gives the key promises of
push systems. A discussion of them is beyond the scope of this paper.

1



can be based on user profiles provided by subscription in-
formation, interest analysis, etc., and allows to tailer infor-
mation to the user’s profile. It is also a powerful tool for
advertising.
Traffic reduction. Push systems facilitate to reduce net-
work traffic. Trying to locate information may cause heavy
traffic. Since push systems can tailor data to users’ pro-
files, this may be decreased considerably. Additionally, an
appropriate transport infrastructure can further cut down on
network bandwidth, e.g. by the use of repeaters.
A broad spectrum of products with rather different proper-
ties is subsumed under the notion of “push.” They differ
considerably in respect to structure, components, flexibil-
ity, and interaction patterns. Their main commonality is the
abstract model of automating delivery of information. The
range of available push systems is difficult to evaluate and
compare due to the lack of a reference architecture. This
paper presents a reference architecture for push systems to
provide a better understanding of the notion of push sys-
tems and to support evaluation and classification of existing
products.
The paper is structured as follows. Section 2 positions push
systems in the context of WWW information systems. Sec-
tion 3 gives the general architecture of push systems and
identifies the main concepts and abstractions. Section 4
then goes into detail and presents the architectural building
blocks and their properties. Section 5 takes a closer look
at the most relevant issues to be addressed by push sys-
tems. These issues critically determine the usability of a
concrete system. Section 6 then relates push systems with
connected concepts, e.g. mobile code systems, and tries
to identify similarities and differences. Section 7 surveys
current systems and gives their position in the architectural
design space. Section 8 rounds out the paper by summariz-
ing the major points made and giving a conclusion.

2 Pedigree of Push Systems

The issues addressed by push systems are not new. Sev-
eral attempts were made to enhance WWW and improve
the situation. A first endeavor was done with the intro-
duction of dynamic documents [23] (client pull, server
push) that pioneered the basic interaction patterns of cur-
rent push systems. Search engines tried to attack the lo-
cating problem but still require advanced user skills due
to the sheer amount of data they index. Customized
sites, e.g. MyYahoo (http://www.myyahoo.com/), CNET
(http://www.cnet.com/), etc. address the customization
and tailoring issues but fall short in terms of freshness and
notification.
Several of these approaches were very successful. Nev-
ertheless, push systems are evolving rapidly since they
try to comprehensively integrate all issues of efficient, fo-
cused information distribution. Many of these issues are al-
ready known from another successful information system:

Usenet news [16]. The shortcomings of Usenet news com-
pared to push systems are: inefficient n copy semantics,
resulting in high resource and bandwidth consumption; no
direct 1:1 customer-provider relation; and a difficult infor-
mation structure [13]. Push systems could be considered as
the modernized successor to Usenet news.
Numerous application domains have already be devised for
push systems [12]. An issue of particular interest is fi-
nancing of push services. Funding could either be done
via requiring subscription fees, pay-channels (see Section
5), or by advertising. As mentioned above information can
be tailored to users and the provider is in control of when
to display information, which allows for new advertising
schemes. Funding by advertisements was problematic with
WWW sites since charges for advertisements have to be
justified with access rates. In the presence of the current,
indispensable WWW caching infrastructure, these figures
present a distorted picture and are not representative. In
contrast, push systems offer comprehensible access rates
due to the subscription mechanism and a high degree of
server-side control.

3 General Architecture

The previous sections gave a quick overview on push sys-
tems, the basic ideas, and their evolution and applicability
to set the stage for an architectural analysis. Software archi-
tecture [25], [10] is a formal arrangement of architectural
elements and describes key design idioms. It provides the
framework within which to satisfy the system constraints
and provides both the technical and managerial basis for
the design and implementation of systems [25]. It supports
understanding of important system concepts, system struc-
ture, interrelationships and communication, and helps iden-
tifying components for reuse.
No standard definition of software architecture exists. A
frequently used definition is provided in [10]:

[Software architecture is a level of design that]
goes beyond the algorithms and data structures
of the computation: designing and specifying the
overall system structure emerges as a new kind of
problem. Structural issues include gross organi-
zation and global control structure; protocols for
communication, synchronization, and data ac-
cess; assignment of functionality to design ele-
ments; physical distribution; composition of de-
sign elements; scaling and performance; and se-
lection among design alternatives.

The elements of an architectural description are compo-
nents, connectors, and (architectural) configurations (see
e.g. [21]). The following definitions of these elements are
based on [21]. Components may be units of computation
or data stores. They can be single procedures up to entire
applications. Connectors model interactions among com-
ponents and rules that govern the interactions. They may

2



be message routing devices, shared variables, or protocols,
etc. Configurations are connected graphs of components
and connectors that describe architectural structure. To-
gether with models of components and connectors, descrip-
tions of configurations enable the assessment of concurrent
and distributed aspects of an architecture.
Figure 2 shows the general architecture of a push system.

Information

Repeater

Source

Broadcaster

Information

Broadcaster

Source

Broadcaster

Information

Legend

Source

Channel

Repeater

Proxy
Cache Proxy

Cache

Receiver Receiver Receiver

Transport System

Internal Transport System CommunicationBackchannel

Source Update

Figure 2: General architecture of push systems

As a first step let us consider a simple push system and
abstract from the transport system. In this case a push sys-
tem consists of information sources, broadcasters, and re-
ceivers. These architectural components interact via the
channel and source update connectors. The information
source component models the data inputs of the push sys-
tem which are to be disseminated. It can be any kind of
data source. Via a data exchange interface modeled by the
source update connector it feeds data into the broadcaster
component and receives feedback (notifications) from the
broadcaster. The broadcaster is in charge of controlling and
scheduling the dissemination process. It distributes data via
a set of channels to receivers. A receiver can receive multi-
ple channels from multiple broadcasters.
The channel and source update connectors define the proto-
cols between the components. The basic interaction pattern
in this setting is downstream distribution from the informa-
tion sources to the broadcasters via channels to receivers
with little to no upstream communication. Upstream data
flow only appears if it is necessary for satisfaction of the
connectors’ (protocols’) requirements, e.g., flow control.
This simple model can be enhanced by the introduction
of bidirectional channels, i.e. upstream data flow from
the receiver (user) to the broadcaster or to the information
source. Instead of bidirectional channels the conventions
channel, for downstream, and backchannel, for upstream
communication, shall be used in the following. Although
channel and backchannel can physically be integrated in
a single bidirectional channel in the implementation, con-
ceptionally they may be completely unrelated and thus are
modeled as two separate connectors. The purpose of the
backchannel is to communicate receiver/user information

to the data sources and broadcasters and allows those to do
adaptations of the data quality, gather data for the adap-
tation process, respond to user requests, add functionality,
etc.
Such a simple system may already be suitable for small to
medium size intranets. For bigger intranets, segmented in-
tranets that need special functionality, or the Internet, how-
ever, this architecture is inadequate. These application do-
mains require the introduction of a dedicated transport sys-
tem level. Though the transport system introduces levels of
indirection into the architecture it is necessary to achieve
performance, scalability, and flexibility in a push system.
The transport system shall be transparent towards channels
and backchannels as indicated in Figure 2.
The transport system consists of caches, repeaters, and
proxies. These components cooperate via specialized trans-
port system connectors, i.e. protocols, that are internal to
the transport system and are not visible outside. Caches
and repeaters shall help to conserve network bandwidth
by reducing the load on broadcasters and bringing chan-
nel data “closer” to the receivers. In case of a cache this
is done on-demand, whereas a repeater is preloaded. Prox-
ies model situations where no direct connection to a push
system component is possible, e.g. for security reasons, to
control network traffic, etc. The proxy component thus acts
on-behalf of some other components.
Putting the key components together then defines the archi-
tecture for push systems as depicted in Figure 2. The next
section will give a more detailed view of this general archi-
tecture. In the following the emphasis of the architectural
analysis will be on components and connectors. Though
Figure 2 may be viewed as a high-level configuration, spe-
cific configurations are not part of a reference architecture
and thus beyond the scope of this paper.

4 Architectural Building Blocks

The key architectural building blocks of a push system
are channel, broadcaster, receiver, and transport system.
A model for the information source can easily deducted
from the other components and thus is not described explic-
itly. Internal transport system connectors shall not effect
the architecture assuming that the transport system itself
is transparent for the other components. Many approaches
for the necessary transport-level protocols (caching, coher-
ence, data exchange, etc.) exist in the literature. Thus they
are not described in detail here.

4.1 Channel

A channel is a connector between a broadcaster and a re-
ceiver. It determines the protocols between these compo-
nents, e.g. channel access protocol, subscription protocol,
etc. A channel can exist in multiple instances connecting
multiple broadcasters with receivers. It determines sev-

3



eral properties of the data and the supported functionalities,
i.e. the quality of service (QoS):
Type of information. Like with TV and radio, content
that can be obtained from a channel is usually focused to a
specific topic, e.g. weather reports, product support, news,
etc.
Data format. The type of information and the protocols to
access the channel define the content types that are possi-
ble for the channel. This can be static data, e.g. text files,
pictures, data, etc., dynamic content, i.e. executable pro-
grams, streaming data, e.g. real-time audio or video, or
combinations of these types.
Personalizing. This channel property determines the ex-
tent of user customization possible for the channel (content
selection, operation modes, interaction, etc.)
Content expiration. Content can be transient or persistent.
An expiration strategy for the channel must exist in order
not to fill up the user’s disk space.
Update strategy. This is closely connected to content ex-
piration but primarily defines the way content updates are
done for the channel. In the simplest case the strategy is
to replace information without reusing it. A more efficient
way are differential updates where possible (this heavily
depends on the type of information, data formats, etc.). An
important issue is the update frequency which has major
impact on data accuracy, network traffic, and scalability.
Scheduling strategy. Channels can either be time-
scheduled or content-scheduled. Time-scheduled channels
(TSC) deliver “unrepeatable”, “life” content. Depending
on the time at which the user accesses the channel the cur-
rent “broadcast” is delivered (comparable to TV, radio). To
make content accessible at a later time a virtual channel
recorder and player (VCR, VCP) are necessary. Content-
scheduled channels can deliver content “independent” of
the time line, e.g. a news services that also offers back in-
formation.
Operation mode. For the users it is important when and
how information is delivered. Online operation is not al-
ways necessary or possible. A user may want to load a mo-
bile computer with a channel and operate it offline. For this
mobile computing support feasible synchronization proto-
cols must exist.
Payment. Currently most channels are free. It is foresee-
able, however, that several future channels will involve pay-
ment (support channels, special contents, etc.) Several pay-
ment schemes are possible: pay-per-view, content-based,
time-based, flat fee, etc.
As mentioned above not only downstream information flow
but also a backchannel may be necessary for some chan-
nel types. A backchannel models data flow and interac-
tion from the receiver to the broadcaster, the information
source or a third party. It may use the same protocols like
the corresponding channel. Since push systems are usu-
ally oriented more towards downstream communication,
frequently a lighter version of the communication facilities

or a different medium are used, e.g. a streaming data chan-
nel may have an HTTP-based backchannel. Nevertheless,
the closer and more seamless channel and backchannel are
integrated the better. The conceptual user interface will be-
come simpler to use and more transparent to the user if tight
integration exists. Backchannels can exist on a per-channel
basis, for a set of related channels, or for the full set of
channels available from one broadcaster. Another impor-
tant difference between channels and backchannels is the
type of relationship between the parties. Conceptually a
channel is a 1:n relationship, whereas a backchannel is 1:1.
Some of the issues described above can be modeled as de-
picted in Figure 3: the channel defines a data stream that
is directed through a set of configurable filter components.
Filtering can both be done by the receiver and by the server.
These components fulfill some of the functionalities de-
scribed above or add others (value added services), e.g.
payment, content selection for children, etc.

Content
Selection

Receiver

Channel

Broadcaster

Analysis
Interaction Billing Billing

Figure 3: Channel structure

A comprehensive list of features which a channel can sup-
port is given in [29].

4.2 Broadcaster

A push system has at least one component that offers chan-
nels and distributes channel contents to the channels’ sub-
scribers. In analogy to TV this component is called broad-
caster. For small-scale intranet applications, like company
information systems, one dedicated broadcaster may suf-
fice. For large-scale applications that provide channels to
a possibly huge number of subscribers (thousands of re-
ceivers) it cannot be a single component. To scale a push
system to such a size a broadcasting infrastructure as we
know it from TV must exist.
The broadcaster itself may be distributed. A set of broad-
casters may provide the channels and exchange updates
among each others to stay in sync. Standard techniques
like primary copy, process groups, or multicasting for dis-
tribution, replication, and consistency can be applied here.
Example architectures are:
Primary broadcaster. This architecture consists of a pri-
mary broadcaster plus a set of hierarchically arranged first,
second, etc. level broadcasters that bring channels closer
(in terms of bandwidth, delay, geography, etc.) to receivers.
The functionality of broadcasters aside from the primary
broadcaster is basically the functionality of a repeater: the
content that is received is sent out again with no further
contents or functionality added. This is the architecture of
TV broadcasting (the difference in the notion of broadcast-
ing is neglected here).
Partitioned broadcasters.The broadcasting system con-
sists of a set of active broadcasters that for each chan-

4



nel provide part of the contents and functionality. Never-
theless, to the clients this system provides the illusion of
a monolithic entity. Internally a synchronization strategy
must be used. Such architectures can vary considerably
in the type and degree of distribution. This architecture is
known from other large scale systems like X.500 [7] and
adds another magnitude of complexity to the system.
Simple Broadcasting. The broadcasting system does not
take care of the transport and distribution of channel con-
tents but relies on functionalities of the transport system.
The simplest pattern is a single broadcaster that relies on
a caching infrastructure inside the transport system. Most
of currently available products follow this approach. This
approach may seem unrealistic but nevertheless is already
applied successfully by other systems like the WWW.
Real systems may of course be combinations of the ap-
proaches above. The primary goal in all the above settings
is that receivers can access channels from a broadcasting
component that is “close” to them in some respect (band-
width, delay, geography, etc.) to minimize network traffic,
provide short delays, and allow scalable systems.

4.2.1 The Notion of Broadcasting

So far the notion of broadcasting in the context of push
systems has been used shallowly. Broadcasting in push
systems cannot rely on a medium that offers broadcasting
functionality like for TV or LANs (e.g. Ethernet). The
medium for a push system is the Internet. Unlike LANs,
e.g. Ethernet, there is no broadcast address concept that
could be exploited. On the one hand this is due to the
extremely heterogeneous structure of the Internet. On the
other hand such an Internet broadcast facility is not even
desirable. Imagine the amount of additional traffic such a
concept would produce on the Internet. Actually the de-
sired functionality is closer to a groupcast/multicast func-
tionality since only subscribers should get the information.
On the Internet, however, this does not make a big differ-
ence. The impacts on network traffic would still be too big.
Additionally, new and complex groupcast/multicast proto-
cols for large-scale use which insure timely distribution to
all subscribers would be necessary.
Thus push systems usually use a higher-level abstraction
of broadcasting: a broadcast—or more correctly a multi-
cast since only subscribers receive it—is emulated by lower
software layers. Several strategies for this kind of emula-
tion are possible:
Client poll. At regular, user-definable intervals the receiver
checks with the broadcaster whether the receiver’s view
of the channel is still consistent or needs to be updated.
This pattern actually puts the above concept of broadcast-
ing upside-down: the initiative changes from server-side to
client-side. The main disadvantages of such a scheme are
that complete data accuracy cannot be achieved (or only
at the cost of very high polling frequencies which induces
high network traffic) and a possibly high number of unnec-

essary messages if the channel is not very dynamic (or only
dynamic on client initiative). But on the other hand consis-
tency requirements of channels are usually rather relaxed
and polling frequencies between 10 minutes and a day do
not cause high network traffic. Additionally, polling mes-
sages are likely to be rather small (some 100 bytes). The
remaining drawback, however, is notification (freshness of
data): how can the receiver be notified of high-priority
changes that happen during its polling interval or situations
which require immediate attention. Polling, however, is
frequently used in push systems since it is robust, simple
to implement, allows for off-line operation, and scales well
to high numbers of subscribers.

Server push. In case of updates the broadcaster contacts its
subscribed receivers and sends new content. For large-scale
push systems this approach has several drawbacks. Since
no broadcast infrastructure similar to TV or LAN broad-
casts exists, receivers must be contacted in a different way.
Contacting the receivers sequentially does not even scale
for medium numbers of subscribers. It would be too time-
consuming, and thus leave receivers with different views of
channel information depending on their ordinal number in
the pushing process. Using multicasting would work up to
a certain number of users but would not scale to high user
numbers. So most likely a hierarchic infrastructure would
have to be used, e.g. organizations announce a dedicated
host which the broadcaster can contact and this host then
takes care of further dissemination. Server push broadcast-
ing also requires a directory of subscribers to be contacted.
Such a directory imposes additional effort since it must be
maintained and kept consistent. For client poll broadcast-
ing such a directory is only optional. Generally scalabil-
ity of server push will be lower than client pull’s but may
allow better consistency and freshness of the channel con-
tent. Another problem of server push broadcasting is that
receivers may not be online all the time, i.e. offline opera-
tion. Loss of data is possible which must be compensated
by re-broadcasts, if possible. This coherence issue consid-
erably adds to the server’s load and complexity.

A promising approach is to combine the two strategies into
a hybrid scheme: server push is used to distribute informa-
tion on the data available in channels (references) allowing
the receivers to keep track of available content, thus hav-
ing good freshness, notification, and consistency proper-
ties; client poll then is used to request the actual content if
wanted.

An issue interwoven with the broadcasting algorithm is the
channel update strategy. The question is how changes in
the data are transmitted to the receiver. A plain replacement
strategy would cause high network traffic in the face of pos-
sibly little changes in the data. A better way to deal with
updates is to use a differential/incremental strategy. This
conserves network and computing resources and remedies
the problems of network partitions and offline operation.

5



4.2.2 The Notion of Subscription

As described above receivers cannot simply “stick their an-
tenna into the air” and receive channels. To receive a chan-
nel the client usually has to run through a subscription pro-
cess beforehand, though this is not necessary per-se, e.g.,
in the case of free channel access and client poll. Neverthe-
less, a subscription is frequently required.
The subscription process usually requires the user to
lookup a channel directory (channels + descriptions) to se-
lect channels, give some personal information, and provide
his/her profile of interests. The channel directory can be
made available as a default channel for the new subscriber
to keep him/her informed of changes. The broadcaster on
the other hand may need subscription information to learn
about the receiver’s destination address, network connec-
tion, etc.
Information about the subscriber besides the distribution
address is not necessary for technical reasons. Channel
suppliers and broadcasters, however, frequently require
subscription information for economic purposes: they want
to establish relations to their customers and need to fund
their channels. Funding will be done most likely via adver-
tisement. Since pricing of advertisements heavily depends
on the range and readership of a medium this information
is vital for the supplier. Advertisement may help to keep
channels free of charges and attract users. Regardless of
one’s opinion towards advertisements technical precautions
for supporting them have to be taken. May this option be
used or not, it will definitely be important for a successful
push product.
Of course privacy and security of subscribers must be guar-
anteed in such a setting. Ideally users should be able to
specify what of their private information can be handed to
other companies and that the storage where such informa-
tion is kept is secure, e.g. by encrypting this data.

4.3 Receiver

The broadcaster’s counterpart on the client side is the re-
ceiver. If we abstract from the transport medium only the
broadcaster and receiver interact. The receiver has two
main components: channel access and user interface. The
receiver is the interface that facilitates interaction between
users and channels. It gets channel data from broadcasters
and presents it to the user. It allows the user to manipulate,
control, and customize the user profile, the received infor-
mation, and the channels. According to a channel’s defaults
and the user’s settings the receiver is responsible for updat-
ing (received/requested) channel content, expiring channel
data, and freeing disk space on demand.
Finding channels can be implemented in several ways. The
receiver could query a channel directory or present infor-
mation on available channels as a (meta-)channel itself,
which would perfectly fit into the architecture. Upon sub-
scription of a channel the receiver has to know the chan-

nel’s broadcaster. Ideally the receiver should be able to find
out about an optimal broadcaster for a channel, i.e. use the
“fastest”, “closest” broadcaster. To enable this choice, the
subscription process must make appropriate data available
to the client. Consequently a receiver will communicate
with several broadcasters. The properties and requirements
for these interactions can directly be derived from the pre-
vious sections. If a backchannel is available the receiver
is also in charge for handling this communication path and
providing the user with a user interface.
The channel metaphor can also be applied to the receiver
itself. Once the receiver software is installed it can also be-
come a channel, i.e. updates of the receiver software are
downloaded automatically as soon as new versions become
available and installed if the user agrees. Thus users would
only have to do an initial setup and could use new software
versions immediately. Bringing this concept into operation
would have tremendous impacts on software distribution
and maintenance. While currently backward compatibility
and distribution of software are a major concern when up-
grading a widely-used software this costs could be reduced
considerably with this concept.
Channels can also hold dynamic content, i.e. executable
code. In analogy to WWW/Java (applet) this content type
shall be termed pushlet. A pushlet is executable code and
data which is intended for execution at the client. Push-
lets execute inside a user-configurable environment pro-
vided by the receiver. This environment supplies the nec-
essary runtime system. The languages for pushlet code and
the environments implied by that may differ considerably.
The following requirements, however, must be addressed
regardless of the concrete system:
Code authentication. The environment must ensure that
the dynamic content is authentic (code signatures).
System protection. The environment must protect the
client system from malicious code that endangers the
client’s system integrity.
Authorization. The environment must offer a flexible user-
definable authorization scheme, i.e. the user must be able
to allow/disallow certain operations for pushlet code. E.g.,
some pushlets may require disk access, network access, etc.
to fulfill their functionality. For the sake of flexibility it
should be up to the user to decide whether to allow such
operations.

4.4 Transport System

So far we have completely abstracted from the transport
system when discussing the broadcasting process, broad-
caster/receiver interaction, etc. In a large-scale setting,
however, a dedicated transport system is necessary to make
a push system scale and operational, i.e. take care of effi-
cient network access in terms of decreasing network band-
width consumption and increase availability and respon-
siveness. This section identifies its main components and
connectors.

6



A key design issue for the transport system is transparency
towards the components and connectors described in the
previous sections. Transparency, however, can only be
achieved to a certain extent. Both the broadcaster and the
receiver need certain knowledge on the transport system to
be able to use it. E.g., they must know about the concept
of repeaters, so that the broadcaster can feed them and the
client can connect to a “close” one. This influence, how-
ever, should be minimized.

The main connectors in a push system can be derived from
the previous sections: subscription protocol, channel proto-
col (differential updates), backchannel protocol. The trans-
port system should be as transparent as possible towards
these connectors.

The components of the transport system can be modeled
by a so-called base distribution component (BDC). A BDC
is a generic component that acts as a broadcaster towards
receivers and as a receiver towards broadcasters in order to
achieve the transparency property. Thus it must understand
the concerned protocols. Besides these protocols other con-
nectors among BDCs may exist.

A BDC can exist in several configurations: repeater, cache,
and proxy.

Repeater. Clients shall not automatically connect to the
primary provider but can get redirected a repeater. A re-
peater is preloaded with the channels’ contents and offers
the same data as the broadcaster but is “closer” (in terms of
network properties) to the receiver.

Cache. Basically a cache is the same as a repeater but is
not preloaded (on-demand repeater). A cache only loads
content on a receiver’s request.

Proxy. A proxy facilitates access to channels where re-
ceivers cannot gain direct access, e.g. receivers may be
located behind a firewall. It acts on-behalf of the receiver.
Every proxy has a domain translator sub-component that
translates back and forth between the generic proxy func-
tionality and the application domain functionality, e.g. in
case of a firewall it translates between the firewall require-
ments and the push system requirements.

BDCs can be organized according to some pattern inside
the transport system. Without constraining the applicabil-
ity let us assume this organization is hierarchical. Then
BDCs can communicate both at the same level and between
different levels. This is meaningful for efficiency consider-
ations, e.g. consider a caching infrastructure where a re-
quest is sent to all caches at a certain level to maximize
the probability for a cache hit; if no hit occurs the request
is forwarded up the hierarchy. A specialized connector, a
so-called transport system coherence protocol (TSCP), is
necessary for these purposes. TSCP is in charge of ex-
changing meta-information on the data among BDCs and
to initiate data transfers if necessary (both preloading and
caching should be possible).

5 Architectural Key Design Issues

Among the set of architectural facets of push systems some
are vital and should be addressed by concrete architectures.
This section discusses such key issues in a push system’s
architecture.
Scalability. As long as a push system is intended for a
rather small set of users and operates on a homogeneous
network infrastructure scalability is not of high importance.
But on a heterogenous network like the Internet and with
high numbers of users it is. The key issue for a push sys-
tem is how to manage a high number of subscribers and
satisfy their requirements in terms of freshness of informa-
tion, customization, tailoring, etc.
A well-designed and efficient transport system as described
in Section 4.4 is the first step towards scalability.The trans-
port system must minimize resource consumption and net-
work traffic, and distribute load while maintaining the
properties of a good push system. A key requirement for
achieving this is cooperation among the transport system
components and between the different organizations run-
ning them. As an example for such an organizational struc-
ture repeaters and caches could be co-located with Inter-
net service providers that every user needs anyway. This
would set up an efficient initial transport system infrastruc-
ture. For efficiency, proxies and caches could also be co-
located.
To have the transport system and the receivers cooperate
efficiently, information services (traders, brokers, directo-
ries) to answer repeater requirements are needed. E.g., a
receiver would need information where to find the “best”
(in whatever respect) broadcaster for a certain channel.
Protocols for such purposes are currently being defined,
e.g. [15], and should be included into push systems.
Beside these domains related to networking, scalability is
also an issue aside the transport system. Management of
high numbers of users also binds reasonable resources at
broadcasters, e.g. maintenance of subscriptions, user pro-
files, tailoring of information, etc. A push system should
define processes for these management areas and support
them with software tools.
Electronic commerce. Push systems like other media in-
volve costs for the operating organization. Funding can ei-
ther be done by advertisements or by collecting fees for the
use of channels. A push system’s architecture should of-
fer flexible support for electronic commerce to accomplish
this.
If push systems succeed a market for advertisement-free
channels will develop. Additionally, professional services
(stock figures, news agency information, etc.) usually are
only offered for payment. A demand for flexible payment
schemes will then arise: flat fees, pay-by-use, pay-by-time,
pay-per-channel, pay-per-information, etc. Like with pay-
TV a channel could offer a certain percentage of “clear” in-
formation that can be received free of charge to attract cus-
tomers and other information in an scrambled or encrypted

7



way which only is readable for subscribers. The number of
possible models is unbounded.
The support of electronic commerce has major impact on
the architecture of a push system, e.g. security, confiden-
tiality, identification of subscribers, payment, management
of accounts, etc.
Security and Privacy. Content distributed by a push sys-
tem can be executable (pushlets), i.e. code that is intended
for execution at the receiver’s site. The receiver must pro-
vide a security architecture to protect the client from ma-
licious code, i.e. prohibiting intrusion, eavesdropping, or
other damages. Pushlet code must be authenticated to pre-
vent code tampering. The security model could base on
existing ones, e.g. Java’s [11], [20] security manager archi-
tecture, and should allow flexible configurations. The user
may want to allow certain operations to trusted pushlets.
For this purpose the security model should include a user-
configurable, semi-automated security negotiation process.
Maintenance. As a push system evolves changes in the
software may be necessary that may cause incompatibili-
ties. This is an issue especially for receiver software, since
it has the biggest installation base. To support seamless
upgrades the receiver could be made into a channel itself.
With well-designed architectures this could free providers
from many software maintenance issues. Such an archi-
tecture must pay special attention to security, e.g. who is
allowed to change the receiver software, or availability is-
sues, e.g. what if the upgrade fails.
Openness. Currently available push systems have a big
disadvantage: they are proprietary, i.e. incompatible. This
means that users are tied to one system or dedicated clients
have to be installed for each push system. The same holds
true for providers. Neither can data be exchanged between
the available products nor can transport infrastructures be
reused. This may be reasonable during the startup phase of
a new concept but later support for interoperation should be
included. This may either mean adaptors or open protocol
standards. Integration efforts are currently under develop-
ment, e.g. [14].

6 Related Concepts

Some of the new paradigms that try to enhance and mod-
ernize Internet services are related to push systems. In the
future they may coexist or merge with push systems:
Mobile code. Program code is no longer tied to a proces-
sor/operating system. The concept is to have code travel
around networks and computers to fulfill their task. Code
can be mobile in terms of portability, e.g. Java [1], or in
terms of functionality, e.g. mobile agents [30]. Mobile
agents are a promising approach to address information dis-
covery, brokering, or offline operation.
A push system could be seen as a mobile code system and
vice versa: a push system that distributes pushlets is a spe-
cial form of a mobile code system. If the concept of push

is considered as a distribution infrastructure for pushlets
and every receiver in a push system is also a broadcaster to
forward pushlets, then we have the basic architecture of a
mobile agent system. A mobile code system on the other
hand can be used to actively transport information to users
(receivers) and thus can serve as a push system, e.g. [28].
Push systems, however, are data-centric, focusing on effi-
cient dissemination of information, whereas mobile code
systems are functionality-centric, dealing with the distribu-
tion of computation to reach a defined goal. Key issues
for push systems are efficient distribution, management of
high numbers of users, and electronic commerce. Key is-
sues for mobile code systems are security, authentication,
authorization, monitoring, and feedback.
Ubiquitous Computing. A user’s personal computing en-
vironment is available wherever he/she may be, e.g. [31].
This comprises physical mobility of computing devices as
well as availability of user data, user configuration, and ap-
plications, i.e. “dissemination,” be it real or virtual, of these
data.
The application domains of push systems, mobile code sys-
tems, and ubiquitous computing overlap to some extent.
They all try to solve similar problems to a different extent
and in disparate aspects, e.g. information discovery, dis-
semination of information, availability of resources, etc.

7 Current Systems

To relate the architectural considerations presented so far
to real systems, this section discusses current systems and
points out their main aspects. A detailed discussion of these
systems would be beyond the scope of this paper.
Castanet [18], [19] is a Java-based push system with a
client-poll broadcasting scheme. It supports static content
and pushlets, offers user-definable channel plugins (mon-
itoring, tailoring), and has an elaborate transport system
infrastructure (proxies, caches, repeaters). The receiver is
considered to be a channel itself and thus can be maintained
automatically by the system.
Netcaster [24] is basically Castanet, which was licensed by
Netscape, bundled with Netspace’s web-server channels. A
web-server channel is a URL that is recursively checked
and downloaded by the receiver at regular intervals. It can
hold Java applets that are executed at the client.
PointCast [27], [26] offers a sophisticated advertising in-
frastructure, an easy-to-use GUI, and tools for creation and
management of channels. It supports static content and
uses client-poll broadcasting. The transport system has
caching managers for client sites to reduce network traffic.
BackWeb [4], [3] uses client-poll broadcasting and offers
user-definable channel hooks (monitoring, tailoring). It
supports static and dynamic content, i.e. Java applets that
are executed at the client site using an external Java Vir-
tual Machine. Server-push broadcasting is possible with
third-party products. Channels have a differential update

8



strategy. Support for flexible content description and pre-
sentation (BackWeb Authoring Language Interface [2]) is
provided. The transport system has proxies and caches for
client sites with multiple receivers.
Webcasting [22] is Microsoft’s push concept. It uses
client-poll broadcasting. Channels are defined in the Chan-
nel Definition Format (CDF) [8] as collections of URLs
that are checked on a regular basis for updates.
WebCanal [17] is a time-scheduled push system for the
dissemination of HTML pages (the above systems are
content-scheduled). A special multicast protocol, Light-
weight Reliable Multicast Protocol (LRMP), allows server-
push broadcasting.
Intermind [29] offers a client for polling channels pro-
vided by Web site publishers. It has no dedicated broad-
caster or transport system. Its central concept is the so-
called channel object that encapsulates data, metadata,
methods, and rules for a channel. Suggested channel fea-
ture categories are: profile exchange, negotiated delivery,
negotiated security, active message processing, channel
feedback, channel linking, and data interchange.
Keryx [6] is a notification system. Notifications do not
include content themselves. For content distribution a hy-
brid push-pull scheme is suggested: clients describe events
they want to be notified upon; in case such an event occurs
clients are actively notified (push); a notification can hold
information where the client can retrieve the actual content
(pull).
Common Datacast Architecture (CDA) [14] is not a push
system per-se but an approach to bridge the gap between
information providers and channel transmitters. A channel
builder component creates subject-based information chan-
nels, connects those channels to data-sources and transmits
that information through various channel transmitters, i.e.
push systems. The long-term goal is an architecture for
customized information subscription, publication, and dis-
semination.

8 Conclusion

Push systems are a promising new technology for informa-
tion dissemination. Their basic approach is active distri-
bution of data. Data can be static or dynamic, i.e. code
to be executed at the client (pushlet). Since it is a rather
new paradigm many approaches exist but a unified model,
terminology, and architecture are missing.
The main contribution of this paper is the definition of a
reference architecture for push systems to allow for classi-
fication and comparison of push systems. It introduces a
clear terminology and describes the architectural building
blocks and their relations. The main elements identified are
broadcaster, receiver, and transport system. The significant
concepts are channels and the notion of broadcasting.
Ideally the transport system is transparent towards the other
components and the broadcasting process though in real-

ity this assumption does not hold. A closer look revealing
the transport system’s internals—repeaters, caches, prox-
ies, and their cooperation—is necessarily given since it has
major impact on the concept of broadcasting. The notion
of broadcasting in push systems was discussed and two
groups of broadcasting algorithms were identified: client
poll and server push. Key architectural issues to be ad-
dressed by well-designed systems are scalability to large
numbers of users, security, and electronic commerce.
With the reference architecture presented in this paper the
broad spectrum of available push systems can now be clas-
sified and evaluated. This facilitates comparison of push
systems and supports users in choosing a concrete product
that fits their requirements.

Acknowledgements

I would like to thank Harald Gall for his comments on this
paper and our fruitful discussions.

References

[1] K. Arnold and J. Gosling. The Java programming lan-
guage. Addison-Wesley, Reading, Mass. and London,
1996.

[2] BackWeb. BackWeb creative guide. BackWeb, 1997.
BALI (BackWeb Authoring Language Interface) ref-
erence guide.

[3] BackWeb. BackWeb Server Guide. BackWeb, 1997.

[4] BackWeb. BackWeb – a cooperative architec-
ture for a flexible push-pull broadcasting solu-
tion. Technical report. BackWeb, March 1997.
http://www.backweb.com/pd/whitepaper.html.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-
text Transfer Protocol – HTTP/1.0. Technical report
RFC1945. InterNIC, Network Working Group, May
1996. ftp://ds.internic.net/rfc/rfc1945.txt.

[6] S. Brandt and A. Kristensen. Web push as an Inter-
net notification service. Technical report. Hewlett-
Packard Laboratories, Bristol, UK, 1997. Keryx.
http://keryxsoft.hpl.hp.com/doc/ins.html.

[7] D. W. Chadwick. Understanding X.500 – The Direc-
tory. Chapman & Hall, 1996.

[8] C. Ellerman. Channel Definition Format (CDF).
Technical report. Microsoft Corporation, September
1997. http://www.microsoft.com/standards/cdf.htm.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. Technical report RFC2068. InterNIC,
Network Working Group, January 1997.

9



[10] D. Garlan and M. Shaw. An introduction to software
architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge
Engineering, volume 1. World Scientific Publishing
Company, 1993.

[11] J. Gosling, B. Joy, and G. Steele. The Java language
specification. Addison-Wesley, Reading, Mass. and
London, 1996.

[12] R. Hackathorn. Publish or Perish. BYTE, 22(9):65–
72, September 1997.

[13] M. Hauswirth and T. Gschwind. Modernizing Usenet
infrastructure – a cache server for Usenet news. Tech-
nical report TUV–1841–97–15. Distributed Systems
Group, Technical University of Vienna, September
1997.

[14] M. Hebert. A push in the web direc-
tion. The MITRE Corporation, July 1997.
Common Datacast Architecture (CDA).
http://www.mitre.org/pubs/edge1/july 97/fourth.htm.

[15] C. Honton. Service Discovery Protocol. Inter-
NIC, December 1997. ftp://ds.internic.net/internet-
drafts/draft-honton-sdp-01.txt.

[16] D. Lawrence and H. Spencer. Managing USENET.
O’Reilly & Associates, Incorporated, January 1998.

[17] T. Liao. WebCanal: a multicast web application. Sixth
International World Wide Web Conference (Santa
Clara, California, USA, April 6-11, 1997), April
1997. http://webcanal.inria.fr/webcanal/www6.html.

[18] Marimba. The Castanet product fam-
ily. Marimba, Incorporated, 1997.
http://www.marimba.com/doc/general/2.0/introducing/
introducing.html.

[19] Marimba. Developing Castanet chan-
nels. Marimba, Incorporated, 1997.
http://www.marimba.com/doc/Castanet Developer
Docs/2.0/index.html.

[20] G. McGraw and E. W. Felten. Java security: hostile
applets, holes, and antidotes. John Wiley, New York,
1997.

[21] N. Medvidovic and R. N. Taylor. A framework for
classifying and comparing architecture description
languages. Proceedings of the 6th European Soft-
ware Engineering Conference (Zurich, Switzerland,
22–25 September 1997), pages 60–76, M. Jazayeri
and H. Schauer, editors. Springer Verlag, Berlin, 22–
25 September 1997.

[22] Microsoft. Webcasting in Microsoft Inter-
net Explorer 4.0 White Paper. Technical re-
port. Microsoft Corporation, September 1997.
http://www.microsoft.com/ie/press/whitepaper/
pushwp.htm.

[23] Netscape. An exploration of dynamic documents.
Netscape Communications Corporation, 1995.
http://home.netscape.com/assist/net sites/pushpull
.html.

[24] Netscape. Netcaster developer’s guide.
Netscape Communications Corporation, 1997.
http://developer.netscape.com/library/documentation
/netcast/devguide/contents.htm.

[25] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40–52, October 1992.

[26] PointCast. Internal PointCast network traffic. Point-
Cast, August 1997. http://www.pointcast.com/.

[27] PointCast. Intranet broadcast tools architecture.
PointCast, August 1997. http://www.pointcast.com/.

[28] FTP Software. World-class push technology
from FTP Software. FTP Software, 1997.
http://www.ftp.com/product/whitepapers/push.html.

[29] D. Reed and K. Jones, Pushing push: advanc-
ing the features of channel communication, W3C
Workshop on Push Technology (Boston, USA,
September 8-9, 1997). W3C, September 1997.
http://www.intermind.com/materials/pushing push
.doc.

[30] J. E. White. Mobile Agents. In I. Bradshaw and
M. Jeffrey, editors, Software Agents. MIT Press
and American Association for Artificial Intelligence,
1997.

[31] K. R. Wood, T. Richardon, F. Bennett, A. Harter, and
A. Hopper. Global teleporting with Java: towards
ubiquitous personalized computing. IEEE Computer,
30(2):53–60, February 1997.

10


