
Elastic and scalable processing of Linked Stream
Data in the Cloud?

Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Chan Le Van, and Manfred
Hauswirth

Digital Enterprise Research Institute, National University of Ireland, Galway

Abstract. Linked Stream Data extends the Linked Data paradigm to
dynamic data sources. It enables the integration and joint processing of
heterogeneous stream data with quasi-static data from the Linked Data
Cloud in near-real-time. Several Linked Stream Data processing engines
exist but their scalability still needs to be in improved in terms of (static
and dynamic) data sizes, number of concurrent queries, stream update
frequencies, etc. So far, none of them supports parallel processing in
the Cloud, i.e., elastic load profiles in a hosted environment. To remedy
these limitations, this paper presents an approach for elastically paral-
lelizing the continuous execution of queries over Linked Stream Data.
For this, we have developed novel, highly efficient, and scalable parallel
algorithms for continuous query operators. Our approach and algorithms
are implemented in our CQELS Cloud system and we present extensive
evaluations of their superior performance on Amazon EC2 demonstrat-
ing their high scalability and excellent elasticity in a real deployment.

Keywords: Cloud, Linked Data, linked stream processing, continuous
queries

1 Introduction
Realistically, all data sources on the Web are dynamic (across a spectrum). Many
current sources are of a slow update nature which is well supported by the ex-
isting batch-update infrastructure of Linked Data, e.g., geo-data or DBpedia.
However, a fast increasing number of sources produce streams of information for
which the processing has to be performed as soon as new data items become
available. Examples of such data sources include sensors, embedded systems,
mobile devices, Twitter, and social networks, with a steep, exponential growth
predicted in the number of sources and the amount of data [22]. Integrating
these information streams with other sources will enable a vast range of new
“near-real-time” applications. However, due to the heterogeneous nature of the
streams and static sources, integrating and processing this data is a difficult and
labor-intensive task which gave rise to Linked Stream processing, i.e., extend-
ing the notion of Linked Data to dynamic data sources. Linked Stream Data
processing engines, such as C-SPARQL [3], EP-SPARQL [1], SPARQLstream [5],
and CQELS [19], have emerged as an effort to facilitate this seamless integra-
tion of heterogeneous stream data with the Linked Data Cloud using the same
abstractions.
? This research has been supported by the European Commission under Grant

No. FP7-287305 (OpenIoT) and Grant No. FP7-287661 (GAMBAS) and by Sci-
ence Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-II) and Grant
No. SFI/12/RC/2289 (INSIGHT).

2 Danh Le Phuoc et al.

None of the above systems could yet systematically and satisfactorily address
all scalability aspects existing in Linked Stream Data processing [20], such as
the wide range of stream data production frequencies, the size of static data,
the number of concurrent queries, elastic load profile support, etc. The existing
approaches start to fail when some of these scalability aspects go beyond certain
thresholds. For instance, C-SPARQL and EP-SPARQL only can deal with small
RDF datasets (∼1 million triples) and most of the approaches are only able
consume very slow input stream rates of around 100 triples/second when the
number of concurrent queries grows up to 100–1000 [20]. These thresholds are
rather modest for real-time and Web applications and must be improved to make
the systems usable for practical applications in practical settings, e.g., each car
in a city producing a data stream.

On top of this, further scalability issues come from practical limits of com-
puter hardware such as memory size, network bandwidth, processor speed, etc.
Even though these parameters will increase over time (Moore’s Law), the general
argument is likely to remain true for the foreseeable future [17]. However, today’s
typical computer hardware is cheap and almost indefinitely replicable [17]. The
total-cost-of-ownership of 8 off-the-shelf commodity servers with 8 processing
cores and 128GB of RAM each is much lower than that of a single system with
64 processors and 1TB of RAM. Therefore, distributing the processing load of a
Linked Stream Data processing engine over networked computers is a promising
strategy to achieve scalability.

Additionally, the trend to Cloud infrastructures, i.e., renting servers on a
“pay-per-use” basis, provides a further argument in favor of this strategy. Ama-
zon EC2, Google Cloud, and Microsoft Azure are prominent examples for this
development. Building a Linked Stream Data processing engine running on such
an elastic cluster potentially enables the engine to adapt to changing processing
loads by dynamically adjusting the number of processing nodes in the cluster at
runtime. This “elasticity” is vital for processing stream data due to its fluctu-
ating stream rates (e.g., bursty stream rates) and the unpredictable number of
parallel queries (e.g., queries can be registered/unregistered at run-time) which
result in hard-to-predict computing loads and resource requirements. To enable
elasticity in a Cloud environment with on-demand load profiles, the used al-
gorithms and data access must lend themselves to parallelization or must be
re-engineered to achieve this property.

To address the above problems, this paper introduces an elastic execution
model based on a comprehensive suite of novel parallelizing algorithms for in-
cremental computing of continuous query operators on Linked Stream Data. We
present the CQELS Cloud implementation of this model and provide a compre-
hensive evaluation of its scalability and elasticity based on an extensive set of
experiments on Amazon EC2. The results show that CQELS Cloud can scale up
to throughputs of 100,000s of triples per second for 10,000s of concurrent queries
on a cluster of 32 medium EC2 nodes. As we will demonstrate in the paper this
is not the ultimate limit of scalability but our approach can scale gracefully to
nearly arbitrary loads if more nodes are added.

The remainder of this paper is organized as follows: Section 2 describes our
abstract execution model for processing continuous queries over Linked Stream
Data on a cluster of networked computers. The required parallelizing algorithms

Elastic and scalable processing of Linked Stream Data in the Cloud 3

for this execution framework are described in Section 3. Section 4 presents the
implementation details of our CQELS Cloud engine and the results of our com-
prehensive experimental evaluation. We discuss related work in Section 5 and
then present our conclusions in Section 6.

2 Elastic execution of continuous queries
This section describes the elastic execution model for processing continuous
queries over Linked Stream Data. The execution model is based on the Linked
Stream Data model and the query semantics of the CQELS query language
(CQELS-QL) [19]. The Linked Stream Data model [3, 5, 19] is used to model
both stream data represented in RDF and static RDF datasets. CQELS-QL is
a declarative continuous query language and is a minimal extension of SPARQL
1.1 with additional syntactical constructs to define sliding window operators on
RDF data streams.

Our execution model accepts a set of CQELS-QL queries over a set of RDF
input streams which produce a set of output streams (RDF streams or relational
streams in SPARQL-result formats). These queries will be compiled to a logical
query network. The network defines which query algebras the input stream data
should go through to return results in the output streams. Figure 1a shows and
illustrating example: First triples are extracted from RDF streams by a set of
pattern matching operators (basic graph patterns), which then are sent to a
number of sliding window joins (derived from the original queries). The triples
resulting from these operations are then sent to a set of aggregation operators.
The outputs of the aggregation operators are the result streams of the original
queries comprising the network.

BGP$

BGP$

BGP$

Σ$

Σ$

Σ$
Pa&ern$
matching$

Window$
join$

Aggrega6on$

RD
F$
in
pu

t$s
tr
ea
m
s$

O
ut
pu

t$s
tr
ea
m
s$

(a) A continuous query network

Gl
ob

al
&S
ch
ed

ul
er
&

Local&Scheduler&

6.2. INCREMENTAL EVALUATION FOR SLIDING WINDOWS 71

buffer. The counter from the index is then used to stop the scan operation earlier. 32 32 the
algorithms for
updating count
and invalidate
with count will
be presented
here

Algorithm 7: Invalidate expired mappings
Input: µ: negative leaf-mapping, R: an input buffer, LM: a buffer for leaf mappings than

generated R
1 if a new mapping µ arrives at window W[i] then
2 remove expired tuples from all other windows
3 W[i].insert(µ)
4 probePropagate(µ,{W[1],..,W[n]}\{W[i]})

5 else
6 propagate negative mapping to upper operator

6.2.3 Multiway Join

Because the multiway join is symmetric, without loss of generality, we extend the incremental equations
of the binary join to the n-way join as shown in equations 6.4 and 6.5 where the inserting and expiring in
the input buffer R1. In order to employ our ring-index for window buffers, we represent the incremental
evaluation of these equations in the equation 6.6 using the select operator �µ1(R

2). The operator
�µ1(R

2) returns all the mappings stored in the input buffer R2 which are compatible with µ1. As
shown above, this operator is supported by the high throughput probe method on the data structure that
has ring-indexes on the variables to be check the compatibility.

(R1] µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) [(µ1 ./ (R2 · · · ./ Rn) (6.4)

(R1 � µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) \ (µ1 ./ (R2 · · · ./ Rn) (6.5)

µ1 ./ (R2 · · · ./ Rn) = ({µ1}⇥ �µ1(R
2)) ./ (R3 · · · ./ Rn) (6.6)

As a result, similar to MJOIN [], the evaluation of a new mapping µ1 inserted in to the input buffer R1

is illustrated in Figure 6.9. When a mapping µ1 is inserted to the input buffer R1 33 , it will be used to 33
DLP:connection
to window?

probe one of the rest input buffers R2 · · · Rn, e.g. R2. For each mapping µi
2 in R2 that is compatible

with µ1, an intermediate joined mapping in the form µ1 � µi
2 is generated. Subsequently, µ1 � µ⇤

2 is
then recursively used to probe the rest to generate final mappings. Each probing sequence will stop at
the first input buffer that does not return any compatible mapping. To avoid double computation issue
negative tuple approach, of in the event of expiration, the outputs of MJOIN is stored in a buffer that is
facilitated with the invalidate method of Algorithm 7. When the expired mapping arrives, it is used a
parameter to call the invalidate to find expired outputs. This invalidating operation is usually done by
the upper operator which consumes the MJOIN output as its input buffer.

6.2. INCREMENTAL EVALUATION FOR SLIDING WINDOWS 71

buffer. The counter from the index is then used to stop the scan operation earlier. 32 32 the
algorithms for
updating count
and invalidate
with count will
be presented
here

Algorithm 7: Invalidate expired mappings
Input: µ: negative leaf-mapping, R: an input buffer, LM: a buffer for leaf mappings than

generated R
1 if a new mapping µ arrives at window W[i] then
2 remove expired tuples from all other windows
3 W[i].insert(µ)
4 probePropagate(µ,{W[1],..,W[n]}\{W[i]})

5 else
6 propagate negative mapping to upper operator

6.2.3 Multiway Join

Because the multiway join is symmetric, without loss of generality, we extend the incremental equations
of the binary join to the n-way join as shown in equations 6.4 and 6.5 where the inserting and expiring in
the input buffer R1. In order to employ our ring-index for window buffers, we represent the incremental
evaluation of these equations in the equation 6.6 using the select operator �µ1(R

2). The operator
�µ1(R

2) returns all the mappings stored in the input buffer R2 which are compatible with µ1. As
shown above, this operator is supported by the high throughput probe method on the data structure that
has ring-indexes on the variables to be check the compatibility.

(R1] µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) [(µ1 ./ (R2 · · · ./ Rn) (6.4)

(R1 � µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) \ (µ1 ./ (R2 · · · ./ Rn) (6.5)

µ1 ./ (R2 · · · ./ Rn) = ({µ1}⇥ �µ1(R
2)) ./ (R3 · · · ./ Rn) (6.6)

As a result, similar to MJOIN [], the evaluation of a new mapping µ1 inserted in to the input buffer R1

is illustrated in Figure 6.9. When a mapping µ1 is inserted to the input buffer R1 33 , it will be used to 33
DLP:connection
to window?

probe one of the rest input buffers R2 · · · Rn, e.g. R2. For each mapping µi
2 in R2 that is compatible

with µ1, an intermediate joined mapping in the form µ1 � µi
2 is generated. Subsequently, µ1 � µ⇤

2 is
then recursively used to probe the rest to generate final mappings. Each probing sequence will stop at
the first input buffer that does not return any compatible mapping. To avoid double computation issue
negative tuple approach, of in the event of expiration, the outputs of MJOIN is stored in a buffer that is
facilitated with the invalidate method of Algorithm 7. When the expired mapping arrives, it is used a
parameter to call the invalidate to find expired outputs. This invalidating operation is usually done by
the upper operator which consumes the MJOIN output as its input buffer.

Co
or
di
na
2o

n&
se
rv
ic
e&

Local&Scheduler&

6.2. INCREMENTAL EVALUATION FOR SLIDING WINDOWS 71

buffer. The counter from the index is then used to stop the scan operation earlier. 32 32 the
algorithms for
updating count
and invalidate
with count will
be presented
here

Algorithm 7: Invalidate expired mappings
Input: µ: negative leaf-mapping, R: an input buffer, LM: a buffer for leaf mappings than

generated R
1 if a new mapping µ arrives at window W[i] then
2 remove expired tuples from all other windows
3 W[i].insert(µ)
4 probePropagate(µ,{W[1],..,W[n]}\{W[i]})

5 else
6 propagate negative mapping to upper operator

6.2.3 Multiway Join

Because the multiway join is symmetric, without loss of generality, we extend the incremental equations
of the binary join to the n-way join as shown in equations 6.4 and 6.5 where the inserting and expiring in
the input buffer R1. In order to employ our ring-index for window buffers, we represent the incremental
evaluation of these equations in the equation 6.6 using the select operator �µ1(R

2). The operator
�µ1(R

2) returns all the mappings stored in the input buffer R2 which are compatible with µ1. As
shown above, this operator is supported by the high throughput probe method on the data structure that
has ring-indexes on the variables to be check the compatibility.

(R1] µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) [(µ1 ./ (R2 · · · ./ Rn) (6.4)

(R1 � µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) \ (µ1 ./ (R2 · · · ./ Rn) (6.5)

µ1 ./ (R2 · · · ./ Rn) = ({µ1}⇥ �µ1(R
2)) ./ (R3 · · · ./ Rn) (6.6)

As a result, similar to MJOIN [], the evaluation of a new mapping µ1 inserted in to the input buffer R1

is illustrated in Figure 6.9. When a mapping µ1 is inserted to the input buffer R1 33 , it will be used to 33
DLP:connection
to window?

probe one of the rest input buffers R2 · · · Rn, e.g. R2. For each mapping µi
2 in R2 that is compatible

with µ1, an intermediate joined mapping in the form µ1 � µi
2 is generated. Subsequently, µ1 � µ⇤

2 is
then recursively used to probe the rest to generate final mappings. Each probing sequence will stop at
the first input buffer that does not return any compatible mapping. To avoid double computation issue
negative tuple approach, of in the event of expiration, the outputs of MJOIN is stored in a buffer that is
facilitated with the invalidate method of Algorithm 7. When the expired mapping arrives, it is used a
parameter to call the invalidate to find expired outputs. This invalidating operation is usually done by
the upper operator which consumes the MJOIN output as its input buffer.

6.2. INCREMENTAL EVALUATION FOR SLIDING WINDOWS 71

buffer. The counter from the index is then used to stop the scan operation earlier. 32 32 the
algorithms for
updating count
and invalidate
with count will
be presented
here

Algorithm 7: Invalidate expired mappings
Input: µ: negative leaf-mapping, R: an input buffer, LM: a buffer for leaf mappings than

generated R
1 if a new mapping µ arrives at window W[i] then
2 remove expired tuples from all other windows
3 W[i].insert(µ)
4 probePropagate(µ,{W[1],..,W[n]}\{W[i]})

5 else
6 propagate negative mapping to upper operator

6.2.3 Multiway Join

Because the multiway join is symmetric, without loss of generality, we extend the incremental equations
of the binary join to the n-way join as shown in equations 6.4 and 6.5 where the inserting and expiring in
the input buffer R1. In order to employ our ring-index for window buffers, we represent the incremental
evaluation of these equations in the equation 6.6 using the select operator �µ1(R

2). The operator
�µ1(R

2) returns all the mappings stored in the input buffer R2 which are compatible with µ1. As
shown above, this operator is supported by the high throughput probe method on the data structure that
has ring-indexes on the variables to be check the compatibility.

(R1] µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) [(µ1 ./ (R2 · · · ./ Rn) (6.4)

(R1 � µ1) ./ (R2 · · · ./ Rn) = (R1./R2 · · · ./ Rn) \ (µ1 ./ (R2 · · · ./ Rn) (6.5)

µ1 ./ (R2 · · · ./ Rn) = ({µ1}⇥ �µ1(R
2)) ./ (R3 · · · ./ Rn) (6.6)

As a result, similar to MJOIN [], the evaluation of a new mapping µ1 inserted in to the input buffer R1

is illustrated in Figure 6.9. When a mapping µ1 is inserted to the input buffer R1 33 , it will be used to 33
DLP:connection
to window?

probe one of the rest input buffers R2 · · · Rn, e.g. R2. For each mapping µi
2 in R2 that is compatible

with µ1, an intermediate joined mapping in the form µ1 � µi
2 is generated. Subsequently, µ1 � µ⇤

2 is
then recursively used to probe the rest to generate final mappings. Each probing sequence will stop at
the first input buffer that does not return any compatible mapping. To avoid double computation issue
negative tuple approach, of in the event of expiration, the outputs of MJOIN is stored in a buffer that is
facilitated with the invalidate method of Algorithm 7. When the expired mapping arrives, it is used a
parameter to call the invalidate to find expired outputs. This invalidating operation is usually done by
the upper operator which consumes the MJOIN output as its input buffer.

Operator(Containers(Execu1on(Coordinator(

(b) Elastic execution architecture

Fig. 1: Elastic execution model for Linked Stream Data

Our execution model is based on a distributed architecture as shown in Fig-
ure 1b. The logical query network is mapped to a processing network distributed
among processing nodes, called Operator Containers (OCs) (see Section 4). The
Global Scheduler of the Execution Coordinator uses the Coordination Service
to distribute the continuous processing tasks to OCs to trigger the correspond-
ing executions concurrently. Similar to Eddies [2, 19], the continuous processing
tasks are input stream elements associated with operator signatures that in-
dicate which physical operators the stream elements need to be processed to
satisfy their processing pipeline (mandated by the original queries). Each OC
hosts a set of physical query operators that process input streams and forward
the output to the consuming operators in the network. The Local Scheduler of
an OC is responsible for scheduling the execution of processing tasks assigned

4 Danh Le Phuoc et al.

by the Global Scheduler to make the best use of computing resources allocated
for that OC. This execution architecture supports elasticity by allowing the ma-
chines running OCs to join and leave the network dynamically at runtime. The
Coordination Service monitors the OC instances for failure or disconnection. In
the event that an OC instance leaves, the Coordination Service will notify the
Global Scheduler to re-balance / re-assign the “missing” processing to the rest
of the network. The Coordination Service maintains all processing state of the
whole network whereas each OC only has a mirrored copy of the processing state
necessary for its processing tasks. When an OC instance leaves, the Coordina-
tion Service will recover its processing state (progress) from the last successful
processing state and reassign the tasks to other nodes in the network. When a
new OC instance joins, it will notify the Coordination Service of its availability
to receive tasks. To start processing assigned tasks, each OC has to synchronize
its processing state with the processing state of the Coordination Service. To
avoid a single point of failure problem through a failure of the Coordination
Service, its processing state is replicated among a set of machines.

Distributing computing over multiple computers supports scalability but also
incurs performance costs because bandwidth and latency of the network are sev-
eral orders of magnitude worse than those of RAM (scalability outweighs the
costs as demonstrated by Grids as the predecessor to Clouds). Therefore, to
avoid the huge communication overheads of processing raw, “very wordy” RDF
streams, we use the dictionary encoding approach of CQELS [19] for compres-
sion, i.e., the processing state – input triples, mappings, etc. – is represented
as integers. Another way of reducing the communication cost is grouping the
operators processing the same inputs into one machine. For example, instead of
sending an input triple to multiple machines to apply different triple matching
patterns, these triple matching patterns can be grouped to a single machine to
avoid sending multiple copies of an input triple (see Section 3.1). Furthermore,
the data exchanged among machines is combined into larger units to reduce
the additional overhead of packaging and transferring single data items (this is
standard “good networking” practise applied in any networking protocol, see
Section 4). On the other hand, network latency is much lower than disk latency.
Therefore, the performance cost of storing and retrieving data on/from other
nodes in a network is comparable to the cost of local disk access. Thus, data
that cannot be stored entirely in memory is distributed to multiple partitions
on the disks of multiple computers “in parallel.” For instance, the intermediate
results from a sub-query to a static data set might have millions of mappings [19]
which can be split and indexed (for future search and retrieval operations) on
multiple nodes. As a result, the access bandwidth to persistent data can be
increased if the number of processing node increases. Interestingly, on typical
server hardware, the sequential access to a disk is comparably faster than com-
pletely random access to RAM [17]. Storing data to be fetched in sequential
blocks and providing distributed indexes to such blocks will overcome the I/O
bottleneck of accessing a single disk on a single computer. The availability of
data to be searched and fetched can also be increased by increasing the data
replicating ratio.

While these strategies may seem overly complicated and heavy, they ensure
optimal resource usage, fault tolerance, elasticity, and scalability in line with the

Elastic and scalable processing of Linked Stream Data in the Cloud 5

accepted state of the art in distributed computing and cloud systems and thus
are necessary to achieve our performance and scalability goals.

3 Parallelizing algorithms for incremental evaluation of
continuous query operators

The continuous query operators of CQELS-QL, e.g., join, filter, and aggre-
gate [19], are defined as operators on bags of mappings. Each of these operators
consumes a set of bags of mappings and returns a bag of mappings which then
can be used as intermediate mappings to be consumed in another operator of
an execution pipeline, called upper operator. In each pipeline, the inputs at the
input side are bags of mappings stored in the window buffers of the concerned
sliding window operators and the operators return a bag of mappings on the out-
put side. The execution pipelines are continually applied to the input streams.
The parallelizing approaches for this continuous evaluation are presented and
discussed in the following sections.

3.1 Parallelizing the incremental evaluation of sliding window
operators

To support maximum throughput and efficiency in a Cloud environment, we de-
signed incremental evaluation strategies for sliding window operators [10] which
minimize computational efforts by avoiding re-computations and which can dis-
tribute the incremental computing tasks to multiple processing nodes. The in-
cremental computing tasks are triggered by two types of events: the arrival or
the expiration of a stream data item, e.g., a mapping. We use a negative tuple
approach [10, 13] to signal expiration events, called negative mappings. To imple-
ment this, a continuous processing task is assigned to an OC as a mapping with
extra information to indicate if it is a negative mapping or a new mapping and
to provide operator signatures. The operator signatures are information about
which operator instances should process the mapping [2]. These signatures are
used by the Local Scheduler to construct a processing pipeline corresponding to
that task.

Stateless operators, e.g., select, project, filter, and triple matching, do not
have to maintain a processing state for incremental evaluation, i.e., they do not
need to access any previous input. Therefore, parallelizing the incremental eval-
uation of stateless operators is straight-forward, since a new or expired mapping
can be processed directly in parallel to produce the corresponding new or ex-
pired mappings. The time necessary for each execution of this kind is usually
much shorter than the time spent for transferring an input data item. To save
communication cost, we group executions that consume the same input in a sin-
gle machine. Additionally, grouping executions might improve performance for
evaluating concurrent queries. For instance, instead of iterating over all triple
patterns to check if an input triple is matched with the constants of these triple
patterns, the indexes of such constants can be used to efficiently find which triple
patterns have constants being matched with values of the input triple. Group-
ing operators does not limit the possible degree of parallelization because the
processing load is split and distributed per stream data item.

For stateful operators such as join and aggregation, the previous input data
have to be consulted to compute the updates necessary when a new or a negative

6 Danh Le Phuoc et al.

mapping is received. To parallelize the incremental evaluation of these operators,
the workers involved in the processing have to be coordinated to share a con-
sistent processing state. How this can be done will be discussed in the next
sections. Due to space limitations, we discuss only two operators in the the fol-
lowing which benefit the most from parallelizing their executions: multiway join
and aggregation. Their parallel, incremental algorithms are presented below.

3.2 Parallel Multiway join
Based on an extensive analysis of queries and their executions, we have found
that multiway joins are a dominating cost factor in typical queries [18, 20]. In-
spired by the MJoin approach [23], we developed a parallel multiway join that
works over more than two input buffers which are used to store data for sliding
windows defined in the continuous execution model introduced in Section 2. As
the multiway join is symmetric, without loss of generality, the evaluation of a
new mapping µ1 being inserted into the input buffer R1 is illustrated in Figure 2.
When a mapping µ1 is inserted into the input buffer R1, it will be used to probe
one of the other input buffers R2 · · ·Rn. Let us assume that R2 is the next input
buffer in the probing sequence. For each mapping µi

2 in R2 that is compatible
with µ1, an intermediate joined mapping in the form µ1 ◦ µi

2 is generated. Sub-
sequently, µ1 ◦µi

2 is recursively used to probe the other input buffers to generate
the final mappings. When a buffer that does not return any compatible mapping
is found, the probing sequence stops. Following the negative tuple approach [10,
13], if a negative mapping arrives, it is used to invalidate expired outputs. This
invalidation operation is done by the next in the query pipeline, which consumes
the multiway join output as its input buffer.

Fig. 2: Multiway join process.

The probing sequence and the invalidation operation are triggered by a new
mapping or negative mapping and can be executed in parallel on multiple ma-
chines given that each machine can access the same set of input buffers. Algo-
rithm 1 shows our incremental evaluation algorithm for the parallel multiway
join with n input buffers. Lines 2–5 handle new mappings and line 9 is for for-
warding a negative mappings to the upper operator. Lines 2 and 3 synchronize
the window W [i] in all machines running this operator. Line 4 checks if the cur-
rent multiway join is supposed to compute the probing sequence triggered from

Elastic and scalable processing of Linked Stream Data in the Cloud 7

this new mapping by verifying its operator signatures. Line 5 calls the recur-
sive sub-routine probingPropagate (see Algorithm 2) to initialize the probing
sequence. The next step in the probing sequence is defined in the sub-routine
findNextProbWin in line 2. It chooses the next window buffer W [inext] to be
probed to find a compatible mapping to forward to in the next step (line 3).
The sub-routine findNextProbWin can be used to inject additional adaptive
optimization algorithms for multiway joins [8]. Note that, a multiway join might
use buffers to store intermediate mappings from subqueries on static data. They
are just a special case of buffers used for sliding windows.

Algorithm 1: Parallel Multi-Way Join

Input: n input buffers W1,..,Wn

if a new mapping µ arrives at window W[i] then1

remove expired tuples from all windows;2

W[i].insert(µ);3

if µ is assigned for this multiway join instance then4

probingPropagate(µ,{W[1],..,W[n]}\{W[i]}) ;5

end6

end7

else8

propagate negative mapping to upper operator;9

end10

For different window joins which share join predicates over the same RDF
streams, we group them into a shared computing network, i.e., a shared join, to
reduce network communication overhead as well as to avoid wasting resources
due to redundant computation. A shared join has a single execution plan for
multiple queries and produces multiple output streams for each separate query
involved. The shared join operator consists of two components: the join compo-
nent and the routing component.

Algorithm 2: Probing propagation probingPropagate

Input: µ, k sliding windows {W[i1],..,W[ik]}
if k==0 then1

inext ← findNextProbWin(µ,{W[i1],..,W[ik]});2

for µ∗ ∈ W[inext].probe(µ) do3

probePropagate(µ ◦ µ∗, {W1,..,Wk}\{W[inext]});4

end5

end6

else7

dispatch µ ;8

end9

The join component produces a single intermediate output stream for all
queries, and the routing component routes the valid output items to the cor-
responding output buffer of each continuous query [14]. The join component
dominates the query load because the complexity of an m-way join operation is
much higher than that of a filtering operation of the routing component for n

8 Danh Le Phuoc et al.

queries (n is usually smaller than
i=m∏
i=1

Wi where Wi is the size of buffer i of the

m-way join).
To share the computations and the memory when processing multiple joins

that have the same set of input buffers, the multiway join algorithm can be used
to build a shared join operator, i.e, the multiple join operator. Let us assume m
multiple window joins W 1

j · · · ./ Wm
j where j=1...k and W i

j is a window buffer

extracted from the RDF stream Si, i = 1...n. Let W i
max be the window buffer

that has a window size equal to the maximum window size over all W i
j , j = 1...k.

Then, the following containment property [14] holds:

W 1
j · · · ./ Wn

j ⊆W 1
max · · · ./ Wn

max

Due to this property, the processing of the query W 1
max · · · ./ Wn

max produces
an output that contains the outputs of all queries W 1

j · · · ./ Wn
j , j = 1...k.

Therefore, the join component only has to execute a single multiway query for
W 1

max · · · ./ Wn
max. In the routing component, each resulting mapping then has

to be routed to the query that takes it as an input. We call the routing component
of the multiple join operator router. The router maintains a sorted list of the
windows relevant to each join. The windows are ordered by window sizes in
increasing order. Each output mapping is checked if its constituent mappings
are valid within valid time intervals of the windows of a query. When a mapping
satisfies the time condition of the query, it is routed to the query’s output buffer.
Figure 3 illustrates a multiple join operator for 3 queries over 2 streams S1 and
S2 where Q1 = W 1

1 ./ W
2
1 , Q2 = W 1

2 ./ W
2
2 and Q3 = W 1

3 ./ W
2
3 . This multiple

join operator connects the 2-way join operator W 1
max./W

2
max to its router where

W 1
max = W 1

3 and W 2
max = W 2

3 . The left-hand side of the figure shows how
the router delivers the output mappings from the 2-way join to each query. For
instance, when the new mapping 〈a1, b6〉 arrives at the stream S1, the 2-way
join probes the input buffer W 2

max to generate two output mappings 〈a1, b6, c1〉
and 〈a1, b6, c5〉. Based on the window conditions of each query, the router routes
〈a1, b6, c5〉 to Q1 and Q2 and both 〈a1, b6, c1〉 and 〈a1, b6, c5〉 to Q3.

Fig. 3: Shared windows example

Generally, the concurrent queries registered to the system only share sub-
sets of the streams involved in their queries. Therefore, we create a network of

Elastic and scalable processing of Linked Stream Data in the Cloud 9

multiple join operators to enable sharing of the execution of subqueries for a
group of queries. For each group of joins that share the same set of streams a
multiple join operator is created. Figure 4 illustrates a network of 4 queries over
4 streams S1, S2, S3 and S4, where Q1 = W 1

1 ./ W 2
1 ./ W 3

1 , Q2 = W 2
2 ./ W 3

2

Q3 = W 2
3 ./ W 3

3 ./ W 4
3 and Q4 = W 2

4 ./ W 3
4 ./ W 4

4 . This network is composed
of three multiple join operators ./M1 , ./M2 and ./M3 where ./M1 is for Q1, ./M2 is
for Q2 and ./M3 for Q3 and Q4. Due to space limits, we refer the reader to [18]
for a detailed technical discussion of this setting.

Fig. 4: A network of multiple join operators.

3.3 Aggregation
An aggregation operator AGGf1(A1),f2(A2),...,fk(Ak) maps each input mapping to
a group G and produces one output mapping for each non-empty group G.
The output has the form <G, V al1, .., V alk>, where G is the group identifier
(grouping key) and V ali is the group’s aggregate value of the function fi(Ai).
The value V ali is updated whenever the set of mappings in G changes in the case
of new and expired mappings. Both new mappings and expired mappings can
result in an update to the value of a group and the aggregate operator needs to
report the new value for that group. The incremental computation of each group
can be done independently, therefore, they can be assigned to different machines
to be computed in parallel. The Global Scheduler can distribute the incremental
aggregation tasks by routing new mappings and expired mappings to processing
nodes based on their grouping keys. A simple routing policy is splitting based on
the hash values of grouping keys. The algorithms for incremental computation of
aggregation over sliding windows in [13, 10] can be used to incrementally update
the value of each group.

4 Implementation and Evaluation

We implemented our elastic execution model and the parallel algorithms us-
ing ZooKeeper [16], Storm1 and HBase.2 The architecture of CQELS Cloud is
shown in Figure 5. The Execution Coordinator coordinates the cluster of OCs
using coordination services provided by Storm and HBase which share the same
Zookeeper cluster. The Global Scheduler uses Nimbus,3 an open source EC2/S3-
compatible Infrastructure-as-a-Service implementation, to deploy the operators’

1 http://storm-project.net/
2 http://hbase.apache.org/
3 http://www.nimbusproject.org/

10 Danh Le Phuoc et al.

code to OCs and monitor for failures. Each OC node runs a Storm supervi-
sor which listens for continuous processing tasks assigned to its machine via
Nimbus. The processing tasks that need to process the persistent data use the
HBase Client component to access data stored in HBase. The machines running
an OC also host the HDFS DataNodes of the HBase cluster. The DataNodes are
accessed via the OC’s HRegionServer component of HBase.

HBMaster)

Nimbus)

Zookeeper)

Zookeeper)

Gl
ob

al
)S
ch
ed

ul
er
)

HRegionServer)

Operator(Containers(

Supervisor)

HDFS)DataNode)

HBase)client)

Lo
ca
l)s
ch
ed

ul
er
)

HRegionServer)

Supervisor)

HDFS)DataNode)

Hbase)Client)

Lo
ca
l)s
ch
ed

ul
er
)

Execu1on(Coordinator(

Zo
ok
ee
pe

r)c
lu
st
er
)

HBase&

Storm&

Fig. 5: CQELS Cloud architecture

Machines running OCs communicate directly without using intermediate
queues via ZeroMQ4 used inside Supervisors. Their available communication
bandwidths are optimized by ZeroMQ’s congestion detection mechanism. Based
on ZeroMQ, OCs use inter-process communication interfaces as defined by Storm’s
“spouts” (stream source) and “bolts”(processing) infrastructure by sending tu-
ples. Links among spouts and bolts in a Storm topology indicate how tuples
should be passed among them. In CQELS Cloud spouts are used to stream data
from sources. Bolts receive any number of input streams from upstream processes
that trigger processing pipelines and continually output results as new streams.
Processing queries works as follows: Using the parallelizing algorithms presented
in Section 3 a logical query plan is transformed to a Storm topology composed
of bolts for all query operators. The stream inputs of the query plan will be
mapped to spouts which stream data to special spouts for encoding raw RDF
stream. Inner query operators will be connected to the encoding spouts following
the acyclic query graph of the logical query plan. Finally, the outermost bolts
will be connected to the decoding bolts to transform the query output back into
the decoded version.

Data is routed to a bolt using a routing policy, called stream grouping. In
CQELS Cloud we use three stream grouping policies provided by Storm, namely,
shuffle grouping, all grouping and fields grouping. The shuffle grouping policy is
used to evenly distribute the input to the parallel stateless operator instances.
The all grouping policy is used to synchronize the input buffers of the parallel
multiway join algorithm in Section 3. The fields grouping policy is used to route
mappings that have a certain key to the aggregation operator instance responsi-
ble for computing the aggregated value of the group corresponding to that key
(see Section 3.3).

In CQELS Cloud, input mappings are ordered and put into batches car-
ried by Storm tuples that are routed among bolts and spouts. For optimization

4 http://www.zeromq.org/

Elastic and scalable processing of Linked Stream Data in the Cloud 11

purposes, we encode the data, thus, mappings contain only fixed-size integers.
Consequently, batching a series of mappings in an array of integers will reduce
the delay of consuming data from the network as well as the serialization and
de-serialization. On top of that, this enables us to employs fast compression al-
gorithms such as [9, 21] for further speed-up. As the input streams coming to the
buffers of an operator instance running in one machine can be unordered, we use
the well-established heart-beat approach [24] for guaranteeing the strict order of
stream inputs to ensure the correct semantics of the continuous operators.

We use HBase to store the dictionary for the encoding and decoding opera-
tions. The dictionary is partitioned by the keys of RDF nodes to store on OC
nodes. The encoding and decoding tasks for RDF nodes for the input and output
streams are evenly distributed among the nodes using the fields grouping policy
on hash values of the RDF nodes. HBase stores the written data in memory
using its MemStore before flushing partitions of the dictionary into sequential
disk blocks on the disks of the destined OC nodes. This allows the writing op-
erations of the dictionary encoding to be carried out in parallel and has high
throughput on OC nodes. Along with the dictionary, HBase is also used to store
and index intermediate results from subqueries (which can be huge) on static
RDF datasets [19]. This data is stored and indexed by the keys used for the
lookup operation which facilitates high throughput of the probing and fetching
operations for the parallel processes of the multiway join algorithm.

All state is kept in the Zookeeper cluster which enables high access avail-
ability through its built-in replication service. Its reliability, performance and
availability can be tuned by increasing the number of machines for the clus-
ter. However, Storm does not directly support state recovery, i.e., resuming a
computation state of a node when it crashes. Therefore, we implemented the
state recovery for OCs ourselves via timestamped checkpoints which is aided by
Storm’s concept of guaranteed message processing. Storm guarantees that every
input sent will be processed by its acknowledgment mechanism. This mechanism
allows a downstream processing node to notify its upstream processing node “up
to which time point” it has processed downstream inputs successfully. The check-
point timestamps are encoded in the acknowledgement messages of Storm. This
provides an implicit recovery checkpoint when a new node taking over should
restart the computation by reconstructing the processing state up to the last
“successful” state.

It is important to note that while we use a sophisticated combination of top-
class distributed infrastructures, this is “just” the programmatical foundation
we base on, in order not to have to deal with classical distributed computing
problems ourselves. The mere use of this infrastructures would neither provide
elasticity nor scalability of stream processing. Our main contribution lies in the
parallel algorithms, operator implementation, and data structures used for this
and the highly optimized implementation of these concepts. For example, our
operator implementations do not map 1-to-1 to Storm’s bolts and spouts, but
those are used as a communication components that trigger an execution pipeline
from inputs tagged with data workflows.

4.1 Evaluation Setup
To demonstrate the efficiency, performance, scalability and elasticity of our ap-
proaches, we evaluated CQELS Cloud using a real deployment on the Amazon

12 Danh Le Phuoc et al.

EC2 cloud. Our current version of CQELS Cloud uses Zookeeper 3.4.5-cdh4.2,
Storm 0.8.2 and HBase 0.94.2. The configuration of the Amazon instances we
use for all experiments is “medium” EC2 instances, i.e., 3.5 GB RAM, 1 virtual
core with 2 EC2 Compute Units, 410 GB instance storage, 64 Bit platform, mod-
erate I/O performance. A cluster includes 1 Nimbus node, 2 Zookeeper nodes, 1
HBase Master node and 2-32 OC nodes within the same administrative domain.
In each experiment, we registered a set of queries or operators and then stream
a defined number of stream items to measure the average processing throughput
(triples/second or mappings/second).5 This process is repeated for 2, 4, 8, 16 and
32 OC nodes. To test the elasticity, OC nodes are added and removed during the
experiments without stopping the CQELS Cloud engine. Our baseline is given
by processing the same queries on a single node, i.e., we show how the global
scalability can be improved by adding more nodes. This shows the benefits of
our central contribution which is the data- and operator-aware load distribution
algorithm for stream queries. Our evaluation focuses on showing how multi-joins
scale – as in Linked Data star-shaped n-way joins are the dominating operation
– when increasing the number of processing nodes, rather than comparing the
performance of different join operators. We conducted sets of experiments:6

Operator scalability: We evaluate the scalability and overheads of our algo-
rithms proposed in a controlled setting by increasing the number of machines
running OCs. For each operator, we fix some parameters to have that kind of
processing loads which shows a clear impact of the parallelization. The used data
is generated randomly.

Parallel queries: We evaluate the performance and scalability of CQELS
Cloud when processing multiple concurrent queries over the Social network sce-
nario of LSBench [20]. LSBench is a benchmarking system for Linked Stream
Processing engines which provides a data generator to simulate Social Network
streams. We choose LSBench over SRBench [25], because LSBench enables us
to control the experimental settings to demonstrate the scalability properties
of our system. Furthermore, with LSBench, we can choose four queries with
different complexities for our experiments: Q1 (simple matching pattern), Q4
(3-way join on streams only), Q5 (3-way join on stream and static data) and
Q10 (3-way join and aggregation). We randomly vary the constant of Q1 to
generate 100-100,000 queries and the window sizes of Q4, Q5, Q10 to generate
10-10,000 queries for each. We use LSBench to generate a dataset for 100k users.
The dataset presents a social network profile of 121 million triples and 10 billion
triples from 5 streams. This dataset can generate tens of millions of intermediate
mappings, e.g., more than 33 million for Q5.

The validity of the throughput measurement for a stream processing engine
is defined by the correctness and completeness of its output results [20]. For
instance, the mismatches of the outputs generated from different implementa-
tions of time-based sliding windows may lead to incorrect interpretations when
comparing throughput among them [7]. In our experiments, as we only measure

5 In the following we mean average processing throughput when talking about pro-
cessing throughput.

6 A detailed guide for how to reproduce our experiments on Amazon EC2 can be found
at https://code.google.com/p/cqels/wiki/CQELSCloud.

Elastic and scalable processing of Linked Stream Data in the Cloud 13

the throughput of one implementation with different configurations, we verify
the validity by two types of tests on only count-based windows for any query:
unit tests for operator implementations and mismatch tests for output results of
queries defined in LSBench [20].

4.2 Evaluation Results

Figure 6a shows the results of 5 experiments: The first two experiments are for
the triple matching operator with 10,000 and 100,000 concurrent triple patterns.
The next two are for the 5-way join and aggregation. The 5-way join has 5 count-
based windows of 100,000 mappings and the selectivity of the join predicates
is 1%. The aggregation is connected to a window of 1 million mappings. The
last one is for a binary join between a window buffer and a bag of 10 million
mappings stored in HBase. Note that, the 5-way join and the binary join are
two distinct examples to show how the multi-join scales when increasing the
number of processing nodes rather than comparing the performance of different
join operators.

2897% 4420%

9638%
11696%

23881%

2011%

6003%

17899%

31996%
43117%

48143%
81000%

98132%

163111%

339978%

16978%
19982% 21997%

40193%

60197%52381%

76132%

125314%
149978%

220165%

1500%

3000%

6000%

12000%

24000%

48000%

96000%

192000%

384000%

2% 4% 8% 16% 32%

Throughput(Triples/s)0

No.0of0OC0nodes0

Binary%join%
Match(100k)%
Match(10k)%
5;way%join%
Aggrega@on%

(a) Throughput of Operators

5/7$
20:00$

5/7$
21:00$

5/7$
22:00$

50,000,000$

500,000,000$

450,000,000$

400,000,000$

350,000,000$

300,000,000$

250,000,000$

200,000,000$

150,000,000$

100,000,000$

0$

Bandwidth(bytes)/

Time/

(b) Peak network traffic

Fig. 6: Operator behaviors

From the graphs we can see that the throughputs increase linearly with the
increasing numbers of OC nodes (logscale on y-axis). This means that the per-
formance increases nearly linearly with the number of processing nodes which is
close to the optimal theoretical limit. In terms of throughput, the light-weight
operators like triple matching (for 10k triple patterns) and aggregation achieve
more than 100k inputs/second with 8 nodes. The ones with heavier query load
like triple pattern matching for 100k patterns or the binary join deliver even bet-
ter scale factors. To confirm that network congestion did not effect the scalability
significantly, we show the accumulated network bandwidth of the experiments in
Figure 6b. The maximum bandwidth used is less than 500MB/sec for all experi-
ments. This means that we use only a maximum of 4GBit/sec of the 10GBit/sec
network offered by the Amazon EC2 cluster and thus the effects incurred by
network communication are negligible.

14 Danh Le Phuoc et al.

8879$
10114$

21778$

30879$

42516$

5971$

8977$

17877$

27849$

37456$

4800$

7857$

16891$

24260$

36127$

3217$

5112$

15519$

23214$
29253$

3000$

6000$

12000$

24000$

48000$

2$ 4$ 8$ 16$ 32$

Throughput(Triples/s)0

No.0of0OC0nodes0

100$

1000$

10000$

100000$

(a) Q1: simple matching

1000#

6041#

9988#

15421# 18216#
24285#

100#

5588#
7838#

12973#
16564#

21230#

4994#
6529#

10054#
13674#

19666#

3398#
4773#

8987#
11145#

15687#

100#

200#

400#

800#

1600#

3200#

6400#

12800#

25600#

1# 2# 4# 8# 16# 32#

Throughput(Triples/s)0

No.0of0OC0nodes0

10#
100#
1000#
10000#

baseline

(b) Q4 : 3-way join on streams

3778$

8064$
10071$

12513$

17404$

2574$

7019$

8099$

11197$

16141$

1993$

5346$

7511$

10051$

13985$

1187$

4119$

5887$

7293$

11941$

1000$

2000$

4000$

8000$

16000$

32000$

2$ 4$ 8$ 16$ 32$

Throughput(Triples/s)0

No.0of0OC0nodes0

10$
100$
1000$
10000$

(c) Q5: 3-way join on streams and static data

1000#

2598#

7826#
9302#

13698#

21094#

100#

2171#

6287#

8113#

9287#

15468#

1557#

3733#

5997# 6468#

11324#

1131# 1977#

4117#
4843#

8179#

0#

5000#

10000#

15000#

20000#

25000#

1# 2# 4# 8# 16# 32#

Througput(Triples/s)0

No.0of0OC0nodes0

10#

100#

1000#

10000#

baseline

(d) Q10: Join and Aggregation

Fig. 7: Multiple queries on Social Network streams

Figure 7 shows more results for four types of queries. Each graph shows the
throughputs of an experiment for a certain number of concurrent queries. Simi-
larly to the previous experiments, the throughput of CQELS Cloud increases lin-
early for a constant query load when we increase the number of OC nodes. When
we increase the query load, e.g., by a factor 10, the throughput only decreases
approximately by a factor of 2. Considering the best throughputs of standalone
systems reported in [20] with the same settings for query Q4 and Q10 as base-
lines, approximately 1000 triples/second for 10 queries and 100 triples/second
for 100 queries, the CQELS Cloud can achieve more than 24 times and 210 times
of these baseline throughputs for 10 and 100 queries respectively. Furthermore,
the more concurrent queries the system handles, the better is the scalability in
relation to the baselines. This may be explained by the increasing reuse of inter-
mediate results by multiple queries. This demonstrates excellent scalability and
shows the advantages of our data- and query-aware load distribution strategy.

5 Related work

To the best of our knowledge, CQELS Cloud is the first system addressing elastic
and scalable processing for Linked Stream Data but our approaches touch on a
number of areas.
Linked Stream Data processing : CQELS Cloud has a data model and query
semantics similar to Streaming SPARQL [4], C-SPARQL [3], CQELS [19], etc.
However, all these are designed to run on a single machine, while CQELS Cloud
goes beyond that and specifically focuses on scalability issues – discussed in

Elastic and scalable processing of Linked Stream Data in the Cloud 15

detail in [20] – by distributing the computing and defining an architecture and
algorithms suitable for Cloud deployments. There is also preliminary work for
distributed stream reasoning on S4 [15] which provides some scalability results
for certain queries and reasoning but is not a complete system like ours.

Distributed stream processing engines: Classical distributed stream processing
engines such as Borealis [6] and StreamCloud [12] are the distributed versions
of the stand-alone engines and only support the relational data model or very
generic stream data primitives and operators. They can be used as black-boxes
to delegate Linked Data Stream processing tasks, but, as shown in [19, 20], the
overhead of data transformation and query rewriting seriously impact on scalabil-
ity, rendering them no competitive option. However, approaches and techniques
from distributed stream processing such as load balancing, operator placement
and optimizations [11] can be used to improve the performance of CQELS Cloud.

Generic parallel stream computing platforms: Storm and S4 are the most popu-
lar elastic stream computing platforms and provide very generic primitives and
data types for representing stream elements. None supports declarative query
languages nor the Linked Data model. On top of that, neither Storm nor S4
support correlating data from distributed storages as CQELS Cloud does with
HBase. There are also other systems such as Kafka7 and Scribe8 that target
specific, narrow application domains (and do so efficiently). For instance, Kafka
and Scribe are used to programmatically create reliable and scalable processing
pipelines for stream logs in LinkedIn and Facebook, respectively. We consider
these works as complimentary work that we can draw on to potentially improve
our implementation.

6 Conclusions

Our goal was to devise scalable algorithms and an infrastructure for Linked
Stream processing that scales to realistic scenarios with high stream frequen-
cies, large numbers of concurrent queries and large dynamic and static data
sizes along with the possibility to deploy them in a hosted Cloud environment
to achieve elasticity in the load profiles and enable “pay-as-you-go” scenarios.
The experimental evaluations show that we have achieved this aim to a large
degree: Our algorithms and implementation exhibit excellent scalability in the
Cloud, essentially supporting arbitrary loads only limited by the number of nodes
and the hardware and software characteristics of the used Cloud platform. We
achieved this through a completely distributed design with novel parallel al-
gorithms for Linked Stream processing, along with a number of optimization
techniques adapted for our purpose and a well-justified combination of sophis-
ticated distributed computing infrastructures. CQELS Cloud provides the same
or even better scalability as the established stream processing approaches out-
side the Linked Data world and will help to make the Linked Data paradigm an
increasingly serious competitor in this area.

7 http://kafka.apache.org/
8 https://github.com/facebook/scribe

16 Danh Le Phuoc et al.

References

1. D. Anicic and P. Fodor. EP-SPARQL: a unified language for event processing and
stream reasoning. In WWW, New York, NY, USA, 2011. ACM.

2. R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing.
SIGMOD Rec., 29:261–272, May 2000.

3. D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus. An execution environment
for C-SPARQL queries. In EDBT 2010, New York, NY, USA, 2010. ACM.

4. A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL – extending SPARQL
to process data streams. In ESWC, pages 448–462, Berlin, Heidelberg, 2008.

5. J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling ontology-based access
to streaming data sources. In ISWC, Berlin, Heidelberg, 2010. Springer-Verlag.

6. Y. A. Daniel J. Abadi. The Design of the Borealis Stream Processing Engine. In
CIDR 2005, pages 277–289, 2005.

7. D. Dell’Aglio, J.-P. Calbimonte, M. Balduini, Ó. Corcho, and E. Della Valle. On
Correctness in RDF stream processor benchmarking. In ISWC, 2013.

8. A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foundations
and Trends in Databases, 1, January 2007.

9. P. Elias. Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theor., 21(2):194–203, Sept. 2006.

10. T. Ghanem, M. Hammad, M. Mokbel, W. Aref, and A. Elmagarmid. Incremental
Evaluation of Sliding-Window Queries over Data Streams. TKDE, 19(1), 2007.

11. L. Golab and M. T. Özsu. Data Stream Management. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2010.

12. V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez. Streamcloud:
A large scale data streaming system. In ICDCS, 2010.

13. M. Hammad, W. G. Aref, M. J. Franklin, M. F. Mokbel, and A. K. Elmagarmid.
Efficient execution of sliding-window queries over data streams. Technical Report
03-035, Purdue University, Dept. of Computer Science, 2003.

14. M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. Elmagarmid. Scheduling
for shared window joins over data streams. In VLDB. VLDB Endowment, 2003.

15. J. Hoeksema and S. Kotoulas. High-performance Distributed Stream Reasoning
using S4. In 1st International Workshop on Ordering and Reasoning, ISWC, 2011.

16. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free coordina-
tion for internet-scale systems. In USENIX, 2010.

17. A. Jacobs. The pathologies of big data. Queue, 7(6):10:10–10:19, July 2009.
18. D. Le Phuoc. A Native And Adaptive Approach for Linked Stream Processing. PhD

thesis, National University of Ireland, Galway, 2013.
19. D. Le Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and

adaptive approach for unified processing of linked streams and linked data. In
ISWC, 2011.

20. D. Le Phuoc, M. Dao-Tran, M.-D. Pham, P. A. Boncz, T. Eiter, and M. Fink.
Linked Stream Data Processing Engines: Facts and Figures. In ISWC, 2012.

21. D. Lemire and L. Boytsov. Decoding billions of integers per second through vec-
torization. CoRR, abs/1209.2137, 2012.

22. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.
Byers. Big data: The next frontier for innovation, competition, and productivity.
Technical report, McKinsey Global Institute, June 2011.

23. V. J. F. Naughton and J. Burger. Maximizing the output rate of multi-way join
queries over streaming information sources. In VLDB. VLDB Endowment, 2003.

24. U. Srivastava and J. Widom. Flexible time management in data stream systems.
In ACM SIGMOD-SIGACT-SIGART, New York, NY, USA, 2004. ACM.

25. Y. Zhang, M.-D. Pham, Ó. Corcho, and J.-P. Calbimonte. SRBench: A Streaming
RDF/SPARQL Benchmark. In ISWC, 2012.

