TU

Technical University of Vienna

OPELIX: amodd and Systern Information  Systems  Institute
for information commerce Distibuted - Systems - Growp

Manfred Hauswirth, Mehdi Jazayeri,
Ivana Podnar, Elisabettadi Nitto and

Andreas Wombacher
M.Hauswirth@infosys.tuwien.ac.at
M .Jazayeri @infosys.tuwien.ac.at
|.Podnar @infosys.tuwien.ac.at
dinitto@elet.polimi.it
wombach@ipsi.fhg.de

TUV-1841-01-10 September 28, 2001

Information commerce (i-commerce) is a special variant of e-commercein
which the goods being offered for sale are digital and thus amenable to
processing by computers. Trading of digital goods opens up new business
opportunities and also poses interesting software engineering challenges.
We present a general model of information commerce that extends the tra-
ditional customer-vendor model with an arbitrary number of layers of in-
termediariesthat process other vendor products and services and offer new
products and services of their own. Examining the interactions among the
participantsin this model leads to the requirements for an infrastructure to
support information commerce applicationsand systems. e present a gen-
eral, flexible, component-oriented architecture for information commerce
systems. The architecture supports all business phases of i-commerce and
may be deployed and distributed in a heterogeneous environment accord-
ing to a user-defined configuration. \We present the design rationale for the
OPELIX system and our implementation experience.

Keywords: Information commerce, e-commerce, software architecture,
distributed systems

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
©2001, Distributed Systems Group, Technical University of Vienna fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/



OPELIX: a model and system for information commerce

M. Hauswirth,

M. Jazayeri, . Podnar
Distributed Systems Group
Technical University of Vienna
Vienna, Austria

[mh,mj,ip]@infosys.tuwien.ac.at

ABSTRACT

Information commerce (i-commerce) is a special variant of
e-commerce in which the goods being offered for sale are dig-
ital and thus amenable to processing by computers. Trad-
ing of digital goods opens up new business opportunities
and also poses interesting software engineering challenges.
We present a general model of information commerce that
extends the traditional customer-vendor model with an arbi-
trary number of layers of intermediaries that process other
vendor products and services and offer new products and
services of their own. Examining the interactions among
the participants in this model leads to the requirements for
an infrastructure to support information commerce applica-
tions and systems. We present a general, flexible, component-
oriented architecture for information commerce systems. The
architecture supports all business phases of i-commerce and
may be deployed and distributed in a heterogeneous environ-
ment according to a user-defined configuration. We present
the design rationale for the OPELIX system and our imple-
mentation experience.

1. INTRODUCTION

The use of the Internet as a platform has had a profound
influence on electronic commerce and has created new busi-
ness opportunities and business models which require sup-
porting infrastructures and models. The simple customer-
vendor model of the early days of e-commerce has been aug-
mented by a large number of intermediaries which increases
the complexity due to the higher number of roles and inter-
actions. An e-commerce infrastructure must support actors
in finding and interacting with each other and also during
the business process. In most cases the actors belong to dif-
ferent organizations, behave according to diverse business
models and are assisted by their various information system
infrastructures.

*This work was supported in part by the European Com-
mission under contract IST-1999-10288 (OPELIX).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ICSE 2002 May 19-25, 2002, Buenos Aires, Argentina

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

E. Di Nitto
Dipartimento di
Elettronica e Informazione
Politecnico di Milano
Milano, Italy

dinitto@elet.polimi.it

A. Wombacher
Integrated Publication and
Information Systems Institute
Fraunhofer-Gesellschaft
Darmstadt, Germany

wombach@ipsi.thg.de

Satisfying these requirements poses significant challenges
to software engineering technology. One of the primary chal-
lenges is to meet ease of evolution. This traditional software
engineering requirement is particularly relevant in the highly
dynamic Internet environment when businesses need to ad-
just to rapidly changing business conditions. This situation
requires that the software should be rapidly evolvable and
exist in many configurations and versions. Another impor-
tant implication is that the software must be clearly tied to
the business model so that changes in the business model
can be easily traced to, and help to evolve, the software.

The OPELIX (Open Personalized Electronic Information
Commerce System) project [23] presented in this paper tar-
gets these requirements and enables enterprises to produce,
sell, deliver, and manage information products over the In-
ternet. An example of an information product is digitized
music, such as a particular song or symphony. Such prod-
ucts do not incur duplication or distribution costs to the
provider, maybe subject to copyright and may be combined
with other similar products (e.g., all songs by a particular
singer). The paper starts with the domain model for infor-
mation commerce (i-commerce) in Section 2 which describes
an information marketplace in which actors can trade infor-
mation products (intangible products [20]). Section 3 then
discusses the driving factors and requirements for the design
of the OPELIX infrastructure which together with the do-
main model lead to the architecture of the OPELIX system
presented in Section 4. We compare OPELIX with related
work in Section 5 and present our conclusions in Section 6.

2. DOMAIN MODEL FOR I-COMMERCE

The OPELIX project focuses on information marketplaces,
virtual, distributed locations in which providers offer infor-
mation and services as goods and customers can find, evalu-
ate and buy these goods. The traded products are intangible
goods as defined in [20] which offers many new business op-
portunities and interaction patterns but also requires special
treatment in several respects such as security and copyright
protection of the products [20].

The domain model identifies business actors involved in
marketplace business processes, describes their interactions,
and the artifacts that are used and produced during these
interactions. The goals for our domain modeling procedure
were to understand information marketplaces and to iden-
tify potential intermediary services in this environment. We
have employed the use case driven modeling approach de-
fined in [17] and UML as the modeling language. This sec-
tion presents an overview of our information marketplace



domain model and its business process model. Detailed de-
scriptions of the models are given in [19] and [12].

Figure 1 relates a customer, a provider, and an intermedi-
ary performing a generic service in a use case diagram that
describes the information marketplace. A provider gener-
ates and offers products or services to customers and inter-
mediaries, delivers them according to the negotiated busi-
ness terms, and may require payment for them. An inter-
mediary offers products or services to customers, providers,
and intermediaries. A concrete business model can involve
any number of any of these roles but at least must consist
of a customer and a provider.

In our model an intermediary acts as a connection between
customers and providers. A customer uses the services of
an intermediary to simplify interactions with providers. We
model this interaction by the use case Perform service. For
example, an intermediary can help a customer find a de-
pendable provider by advertising products on the provider’s

behalf.

Provider

Supply product -~~~ Find provider

X

Intermediary

Supply product

Perform service

Customer

Figure 1: Use case diagram relating the actors of
the information marketplace

After locating the provider the customer can choose to
conduct business directly with the provider (Supply product
use case that connects customer and provider). A customer
may also choose to communicate only with an intermedi-
ary. In this case the intermediary delivers products, handles
payment, etc. on behalf of the provider (Perform service use
case). The two remaining use cases Find provider and Find
intermediary model the initial process of locating providers
and intermediaries.

The most interesting and complex use case is Perform ser-
vice (where service is meant as a generic service). The ser-
vices and products an intermediary offers can be manifold.
It can provide search and retrieval services, advertise prod-
ucts or services, group, or aggregate information products,
or provide negotiation or payment services. The underlying
idea is that customers, providers, or intermediaries can del-
egate certain functionalities to specialized intermediaries so
that they do not have to address certain issues themselves.

During their interactions customers, providers, and inter-
mediaries produce, use, exchange and modify the following
main artifacts:

Request: defines what a service or product of interest to a
party is; it is issued by a customer or intermediary and sent
to a provider or intermediary.

Offer: defines a service or product of a provider or interme-
diary (including legal terms and prices); issued by a provider
or intermediary towards a customer or intermediary.
Order: if a party is satisfied with an offer (possibly after a
negotiation phase) an order is placed with the offering party;

it is issued by a customer or intermediary towards a provider
or intermediary.

Product: a good (service, information) which is traded in
a business model; it is sent by a provider or intermediary to
a customer or intermediary.

The sequence of interactions among customers, providers,
and intermediaries define the phases of the business process.
A typical business model consists of a combination (of a
subset) of the following phases:

Matching: Parties publish descriptions of the available
products to enable other parties to discover products of
their interest and browse through available offers. Offers
may be legally binding or not. The matching phase ex-
ists in 2 flavors: targeting (the provider initiates the inter-
action by sending offers to potential users) and searching
(the customer initiates the interaction by issuing a request).
Typical implementations include publishing on web servers
(passive), mail/push distribution (active), or active search-
ing and matching (robots, mobile agents). This phase was
renamed from advertising as presented in [12] to matchmak-
ing since it covers a broader notion than implied by the term
advertising.

Negotiation: Once a product of interest is found, negoti-
ating the business terms and possibly the properties of the
product can start. Independently of the concrete negotia-
tion process this phase must end with an agreement between
the involved parties to continue with the succeeding phases.
If no agreement can be reached at all the business process
aborts. However, negotiation and matching can trigger each
other mutually: If a party declines an offer it can request
new offers or the party issuing the original offer can send
new offers.

Ordering: After an agreement on the product and the busi-
ness terms has been reached, a party may order the product.
If the agreement is legally binding, we call it a contract.
Payment: If a product requires payment, then monetary
values must be exchanged. We consider payment from a
high-level point of view due to the arbitrary ways it can be
done: It may involve credit card interactions, a bonus point
system, micro-payments, or electronic money transfers, and
heavily depends on the applied payment model such as rates,
pay-per-use, or flat fees. Since these models involve very
different concerns we address the conceptual superset and
assume that the applied payment system secures payment
transactions.

Delivery: In this phase the involved product is delivered
to the requesting parties. Security in this phase heavily de-
pends on whether products are tangible or intangible. Secu-
rity for tangible goods is provided by non-electronic means
whereas for intangible goods additional security issues apply,
which require special consideration. For example, intangi-
ble goods such as programs or documents may be duplicated
and sold without the consent of the copyright holder. The
security problems of intangible goods and an approach to
address them are presented in [20].

The phases described above are the building blocks for
OPELIX’s incremental business process model in which the
provider gradually delegates phases (i.e., functionality) to
the intermediary. The benefit for the provider in these mod-
els is that it can delegate parts of the process and pays the
intermediary for the service(s) it provides. The customer
may also benefit because the models may allow him/her to
compare prices and products, combine them, or simply order



' match product |:|

order product

pay product

deliver product

Figure 2: The A model

them at a single location.

The model was developed in the course of the OPELIX
project to represent business models and analyze their prop-
erties of interest. For example in [12] this model is applied
for security assessment of all representable 3-party business
models. An incremental approach was chosen for the model
to simplify the presentation without constraining its gen-
eral applicability. In the following we briefly describe 3
possible business process model configurations to illustrate
the model’s underlying concepts. A complete description of
OPELIX’s business process model is given in [12].

In the simplest case all interactions occur directly between
the customer and the provider. We call this the direct model.
This model is used frequently today but is likely to diminish
in importance because it requires the full set of functionali-
ties for all phases at the customer and the provider, yielding
“heavy” applications. It may necessitate considerable in-
stallation efforts on the customer side if the customer does
not have the possibility to exploit the required components
at the provider, for example via a light-weight web interface
which is not possible in all cases. Another disadvantage
of the direct model is that the customer must contact all
providers directly and cannot delegate tasks to an interme-
diary. The provider is in full control of the whole process
but at the cost of having to provide all required functional-
ity. The sources of revenue are clear since only the provider
and no intermediaries are involved.

In the A model shown in Figure 2 the intermediary takes
over the matching phase from the provider. To be able to do
this the intermediary needs marketing information from the
provider such as a description of the provider or individual
products or a product catalog.

In the next model—the AN model—the intermediary pro-
vides negotiation service in addition to matching. For the
negotiation service the provider must supply the interme-
diary with an additional information—the pricing and dis-
count model. This model should enable the intermediary to
negotiate with the customer in a meaningful way on behalf
of the provider. Depending on the complexity of this model,
negotiation can range from simple discounts for ordering a
high number of products up to sophisticated models based
on customer history, customer classification, etc. The choice
depends heavily on the amount of information a provider
wants to disclose to the intermediary.

Following the incremental approach the other models are
defined in a similar way with intermediaries that take over
more and more functionality of the provider. Depending on
the business model the sequence of phases may differ from
the sequence in the incremental model as described above.
For example, payment may follow the delivery phase, or a

product might be delivered to a party without prior match-
ing, negotiation, and ordering, on the basis of a party’s pro-
file and payment is performed after the party accepts the
product. In principle any sequence of the presented phases
is possible or phases may be skipped. However, such mod-
els can easily be transformed into the incremental model
without changing their properties. Also the number of in-
termediaries involved may differ: One intermediary may be
used for all phases or a dedicated intermediary may be used
for each phase. For example, one intermediary may be in
charge of all phases except for payment which could be done
via the services of a credit card company.

So far we have implicitly assumed in the model that the
intermediary takes over functionality from the provider. But
in fact the model is symmetric so that the similar incremen-
tal models also can be derived from the above if the inter-
mediary takes over functionality from the customer and acts
on behalf of the customer. All concepts described above
also apply to the symmetric model. For example, if the
intermediary took over the matching phase from the cus-
tomer (A’ model), the customer would provide matching
criteria to the intermediary. Additionally, both models may
be mixed which provide the possibility to model very com-
plex business interactions. For example, the customer may
delegate matching and payment to two different intermedi-
aries and the provider may delegate matching and delivery
to two other ones. If additionally the sequence of phases is
changed this scenario clearly models a very complex though
not yet existing business case which, however, may enter
daily business soon.

The rationale for introducing a new model as described
above are that in fact we found no general model we could
use for the i-commerce domain. Traditional e-commerce
models exist but do not address the special requirements
of i-commerce, for example, the new possibilities of combin-
ing information products into a new one through automatic
processing, the special security requirements, the possibly
very short life-time of intangible goods, and the new inter-
action patterns which are possible in the 3-party model. A
detailed discussion of these motivating issues is given in [19].

The OPELIX model subsumes all well-known e-commerce
models which can easily be mapped onto our model. The e-
shop model and portal (for one provider) correspond to the
direct model. A (process) portal [27] and the associated part-
ner model, e.g., Amazon’s, can be mapped onto the A model
(in [12] we show that this model is problematic because it
depends on trust and cannot be secured technically). Sev-
eral others, such as (process) vortex, dynamically trading
processes, third-party marketplace, (value-adding) reseller,
or virtual communities, require special consideration since
no simple 1:1 mapping can be defined for them, i.e., their
definitions, as given in [27] for example, are fuzzy and thus
they can be mapped onto several counterparts in our model
which emphasizes more precise definitions. A discussion of
all possible mappings is given in [12].

Figure 3 shows the class diagram that represents the do-
main model of the information marketplace.

The business processes as discussed above can be viewed
as business relationships which we identified as the central
concept in the domain model. A Business Relationship is
defined by the aggregation of actors and artifacts that are
involved in the business process. Customers, intermediaries,
and providers are modeled as actors with changing roles as



CanbeaB2B or C28
~ 7| relationship

Individual or T
N\ / Request
\ 2.n bl

Document
Actor o
state
D
create() Offer
0 | send)
andlyze() 3
parforms | 1. acoept()
reject()
Role modiify()
dlos=) Order
nolify( sagat U,T
ecification
Customer ZF Provider Spedt
Intermediary s
creete() -
recaiveProduct() sendBill() modify( n—
payBill) recaiveProduct( % D
compareOfers() By 0 EN has orders and offers
chooseProvider() Bilo %% specifies product
compareOffers() 2 features
chooseProvider() Product
u * « | create()
provides Tl.. 0 | roap
svice o | delve)

7

Figure 3: Information marketplace domain model

described in [28]. The classes Request, Offer and Order model
the corresponding artifacts and are subclasses of the abstract
class Document. Document’s methods model the activities
performed by customers, intermediaries, or providers that
change the state of a particular document. An important
part of each document is the specification of the requested,
offered, or ordered information product. Thus Document
is associated with Specification which specifies the product
features related to Request, Offer, and Order.

Actor is associated with Document because an actor cre-
ates a particular document and sends it to another actor
for processing. A customer can create requests and orders,
a provider creates only offers, while an intermediary may
create requests, offers and orders. A provider creates and
owns a number of products which is represented by the as-
sociation between Provider and Product. The association of
Product with Specification models the fact that a product is
described by its features.

The association between Intermediary and Service describes
the basic characteristic of an intermediary which is to pro-
vide a service. Service inherits the properties of Product.
Product’s operations need to be overridden in Service since
the processes of creating and modifying a service are quite
different from those for creating and modifying a product.
The number of actual services is currently unknown. Match-
ing, negotiation, ordering, payment, and delivery are just ex-
amples of potential intermediary services. Further services
of intermediaries such as classifying, combining, or mediat-
ing are discussed in [19].

Based on this model, we have concluded that communi-
cation and coordination between business actors, e.g., cus-
tomers, providers, and intermediaries, is the key for the sup-
porting system. To enable such communication, we need a
standard language that ensures inter-operability. It should
enable the exchange of requests, offers and orders among
business actors. Each document should contain the informa-
tion regarding involved parties and their roles in the busi-
ness process, and describe the related information product
and provided services. It is also crucial to enable the exe-
cution of the business process model that comprises prede-

fined actions. It is highly non-deterministic since business
decisions and events trigger process actions. However, the
process must be guided to comply with predefined business
rules, which makes the supporting infrastructure design even
more complex. The supporting system must also enable the
composition of intermediary services. For example, an in-
termediary may decide to provide matching and negotiation
to its customers. It therefore needs only those parts of the
system that provide the desired functionality without losing
inter-operability.

The presented domain model and its analysis have guided
the definition of the architectural principles for the OPELIX
platform. These principles and the architecture are ad-
dressed in the following sections.

3. DESIGN ISSUES

In Section 2 we have identified a number of phases that
can take place in an i-commerce interaction. We have also
argued that some of these phases may not be relevant in
certain business processes and therefore they are skipped in
such processes. Also, we have pointed out that the execu-
tion of each phase can be under the responsibility of differ-
ent actors. An additional requirement that is not explic-
itly expressed by the domain model but represents a critical
non-functional issue for the OPELIX platform is the ability
to interoperate with different kinds of standards or existing
COTS.

Based on the above considerations we have defined the
main design goals of the OPELIX architecture as: (1) the
ability to structure the system in terms of functional com-
ponents autonomous from each other, each of which is in
charge of a specific phase in the business model; (2) the
ability to support loosely-coupled components; (3) the abil-
ity to run OPELIX installations ranging from a minimal set
of components up to a full-fledged configuration; and (4)
the ability to integrate different standards or products that
provide specific services. In the following subsections we
describe all above factors in detail.

3.1 Component orientation

The i-commerce environment is highly dynamic. Busi-
ness conditions, business alliances, customer habits and pref-
erences, and product and service offerings change rapidly.
Businesses and their information systems also must be able
to change rapidly to accommodate these changes. The only
way we currently know how to do this is through the use
of a flexible software architecture. The software architec-
ture must reflect the business model so that it can accom-
modate changes to it relatively easily. For this reason, we
have analyzed the i-commerce business processes presented
in Section 2 for designing a component-based software ar-
chitecture.

In the literature a component-based approach to software
development is defined as a software development paradigm
based strictly on the use of standard components, i.e., soft-
ware is developed from efficient and generic components
found in a standard software catalog [18]. In the OPELIX
context we have associated a logical component with each
of the main phases that characterize the i-commerce appli-
cation domain. Moreover, we have defined a higher-level
component that acts as a process support system by orches-
trating the execution of the other components according to
the adopted business process. Finally, we have identified a



set of lower-level components providing some basic function-
ality such as cryptography and storage support. All these
components can be distributed and interact according to
well-defined interfaces to provide proper decoupling and thus
support clear separation of concerns among the components
(see Section 3.2).

3.2 Loose coupling of components

Loose coupling of components has benefits both at devel-
opment time and during system operation. At development
time, it leads to clear separation among components and
smooth integration effort. During operation of the system,
it leads to the ability to dynamically reconfigure the system.
These two aspects address two important requirements for
OPELIX: the ability to integrate COTS for specific services
and the ability to reconfigure the system depending on the
business process being adopted. The second issue offers the
possibility, for instance, that services are operated either by
the intermediary or the provider or jointly by both of them.

A decoupling approach that is being studied with grow-
ing interest by researchers and practitioners is the pub-
lish/subscribe or event-based paradigm [24] and exploits asyn-
chronous, anonymous communication among components.
According to this approach, components communicate by
generating and receiving event notifications. A component
usually generates an event notification when it wants to let
the “external world” know that some relevant event has
occurred in its internal state. The relevant aspect in this
process is that the event does not contain the list of its
addressees: the event is propagated to any component that
has declared interest in receiving it by issuing a subscription,
which is an expression on the content of the event. When
an event fulfills the condition stated by a subscription then
the event is “compatible” with that subscription. An event
dispatcher or bus is in charge of receiving the events, evalu-
ating the subscription, and propagating the events to their
listeners. The event propagation is completely hidden from
the component that has generated the event as well as the
receivers. The anonymity of notifications has two impor-
tant consequences. First, a component can operate in the
system without being aware of the existence of other com-
ponents. All it has to know is the structure of the event
notifications that are interesting to it, so that it can issue
the necessary subscriptions. Second, it is always possible
to plug a component in and out of the architecture without
affecting the other components directly. These two effects
guarantee a high compositionality and reconfigurability of a
software architecture.

In the OPELIX platform the publish/subscribe approach
is used in combination with point-to-point communication
to guarantee component decoupling when needed. A first
use of the publish/subscribe approach in OPELIX aims at
managing the deployment of the OPELIX components. In
fact, since they can be independently (un-)installed, compo-
nents need some registration mechanism that allows them to
make the other components aware that they are available.
Whenever a component is started, it issues a registration
message that is received by all the currently active compo-
nents. It turn, such components issue a response event to
notify the new-comer that they are alive. By exploiting the
publish/subscribe approach, listeners interested in the regis-
tration messages simply need to subscribe to them and wait
for their occurrence, while originators of such messages can

subscribe to the response and publish the registration event
without being aware of the identity of the listeners.

Another important use of the publish/subscribe approach
is to externalize all relevant state changes occurring in a
component. Thanks to this externalization, all components
can make decisions to ensure the progress of the business
process. For instance, the dissemination and delivery com-
ponent can trigger the execution of all actions needed to
execute a payment.

3.3 Customized installations

As we have mentioned before, the execution of all busi-
ness phases is not mandatory but depends on the adopted
business model. Indeed, the way a business phase is exe-
cuted may depend on specific situations such as the device
the user employs or the configuration preferences defined by
an intermediary or a provider. Finally, the distribution of
ownership of services among the various actors can change
dynamically and is not fixed. Thus the OPELIX platform
can be installed and executed in several different configu-
rations. A configuration does not necessarily provide the
complete OPELIX functionalities. Of course, whenever a
configuration is incomplete, some of the services provided
by the complete installation can be missing, but this does
not prevent the correct behavior of the other services.

For instance, a customer may not want to install specific
software and hardware for handling payment. In this case,
he/she will still be able to exploit the OPELIX platform,
but only can access information and services that are free-of-
charge or that exploit payment methods that do not require
any software/hardware to be installed at the customer’s site.
As another example, consider the case of an intermediary
who does not want to negotiate with customers. In this
case it will not install the component devoted to execute
negotiation and the system will disallow customers to nego-
tiate. However, the intermediary could decide to install the
negotiation component at any time thus enabling negotia-
tion. The registration mechanism presented in Section 3.2
guarantees that these requirements are addressed since it al-
lows each component to discover the current configuration
of the system at run-time. Moreover, it enables dynamic
recognition of new-comers and proper reconfiguration of the
entire system.

34 COTS integration and standard compli-
ance

As we have mentioned, one of our goals it to guarantee in-
teroperability with standards and COTS. At the same time
we want to ensure that the conceptual model underlying the
OPELIX architecture is not affected by the specifics of con-
crete solutions, especially when several alternatives exist,
for example, SET and Millicent for payment. Therefore we
defined and use a design framework that keeps specific tools
separated from the core of the system. The main idea is that
each OPELIX component implements a software layer that
decouples all the other components from the specific tools it
encapsulates. For instance, Figure 4 shows how the payment
framework can integrate different payment mechanisms still
maintaining the same interface to the external world. The
framework is in charge of mapping requests coming from
the external world into the format that is understood by
the specific tool accomplishing the request, and vice versa.
Note that by introducing this level of abstraction different



tools can coexist in an installation. The way one of them is
selected for executing a certain service is defined within the
logic of the component that encapsulates them and the data
presented to it.

4. THE OPELIX ARCHITECTURE

The domain and business process models for i-commerce
summarized in Section 2, together with the factors described
in Section 3 led to the architecture of the OPELIX e-commerce
platform shown in Figure 4.

The figure shows the full configuration for a single OPELIX
installation at one site, for example, for an intermediary.
In a practical setting OPELIX would be installed at every
participating party’s site enabling interaction to do busi-
ness. The presentation in Figure 4 is arbitrary—we might
as well have chosen to show components as “equal” peers
connected via a communication medium, but we decided
to show the components in a logically structured way as
we see their “position” in the architecture. Figure 4 al-
ready points out clearly two main architectural principles of
the OPELIX architecture: component-orientation and di-
rect, peer-to-peer-like inter-component communication. An
OPELIX installation consists of a set of independent compo-
nents that can communicate freely among each other via a
hybrid client-server/event-based communication infrastruc-
ture which will be discussed in Section 4.1. This allows each
component to request directly the services it needs to fulfill
its task. All service requests are done via the network so the
OPELIX components do not necessarily have to run on the
the same host. In fact we envision that a typical provider
or intermediary installation would be distributed over sev-
eral specialized hosts. For example, a company would have
a central security site to enforce its security policy. How-
ever, OPELIX does not constrain the user to any particular
configuration. Additionally the OPELIX infrastructure ex-
ploits component-orientation to be dynamic and changeable
over time, i.e., components may join or leave the installa-
tion at any time. For example, this means that the payment
component could be temporarily shut down to do a software
upgrade and join the system again afterwards without hav-
ing to stop the overall system. OPELIX notifies components
of such events (see Section 4.1).

As already mentioned above Figure 4 shows the full config-
urations for an intermediary or provider. In many cases this
configuration is too heavy, e.g., for most customers, or some
components may not be need at all. Since OPELIX only
requires some minimal set of components to be operable the
infrastructure can be adjusted to the user’s need in a wide
range. The minimum configuration of a customer consists
of the user interface and the communication infrastructure.
A provider/intermediary site requires the offer management
and security components and the obligatory communication
infrastructure to be operable.

The components supporting the business phases were de-
rived from the 5-phases/3-party business process model (Sec-
tion 2). The Targeting component (of a provider or interme-
diary) is in charge of actively announcing offers to customers
and intermediaries’ according to their profiles. Offers are ex-
pressed in OPELIX’s Business Offer Language (BOL) [30]

!Conceptually an intermediary has a customer and a
provider side. To simplify the presentation we will only use
the terms customer and provider in the following and imply
that all statement made for those also apply to intermedi-

which is discussed in Section 4.2. Targeting exploits the ser-
vices of the Delivery and Dissemination Component (DDC)
to reach customers. Conversely, customers can actively in-
quire for offers via the Request-and-Matchmaking (RMM)
component. Inquiries are specified as incomplete offers in
BOL. The RMM component is presented in Section 4.3. The
negotiation component allows providers and customers to
negotiate in an offer /counter-offer way which should narrow
down to a completely specified offer both sides accept. Both
interactive and automatic negotiation is supported. Having
agreed on an offer triggers delivery or payment depending
on the business model. The ordering phase of the process
model need not be supported by a dedicated component be-
cause we assume that reaching an agreement closes a deal,
i.e., both sides have a digitally signed contract, and implies
ordering. The payment component offers a high-level gen-
eralized payment interface [8] which abstracts from the con-
crete payment infrastructure used such as SET, Millicent,
etc. The DDC component does the same for any kind of
delivery services.

The Business Workflow component supports the defini-
tion of the user’s business process in terms of OPELIX’s
Business Offer (BOL) Language [30]. This component is a
special component that directs the interaction of the other
components within certain bounds.

The components on the left in Figure 4 represent the non-
functional services we require in OPELIX. The User Profile
component holds information on other users (mainly cus-
tomers) to personalize services and information goods to
their requirements and needs. User profiles are provided in
part by the users but can be augmented by provider-side
information such as statistical information, implicit pref-
erences derived from analysis of interaction patterns, etc.
Currently this part of the user profiles is provided offline
through logfile analysis. However, adding on-the-fly analy-
ses is straightforward. Users have full control of all stored
information in their profiles and can change it as they prefer
to meet EU privacy regulations [7].

Typically vendors wanting to sell information already em-
ploy a DBMS or a content management system (CMS) so
we did not include one in the architecture. The “interface”
to these and any other kind of information stores is pro-
vided by the Offer Management component. It stores all
user-defined offers and links information and services to of-
fers via Uniform Resource Identifiers (URIs) which provides
a high degree of flexibility. Offers are discussed in detail in
Section 4.2.

The User Access component (UA) provide the user inter-
face to the OPELIX and all its components. The individ-
ual interfaces of the OPELIX components are integrated by
the UA and augmented by supporting user interface func-
tionality, for example access to configuration options or user
feedback. To comply to current user interface standards and
to support remote access and distribution we tried to use a
standard Java-enabled web-browser as far as possible.

The security component is in charge of all security con-
cerns of the infrastructure. Specifically it offers a new copy-
right protection mechanism for textual data [26], secure (en-
crypted) and authenticated data transmission via SSL (in-
cluding message origin authentication and message integrity)
entity authentication, access control (to OPELIX), transac-
tion authentication, key management and digital signature

aries.

)



Business Workflow

User Profiles

Offer Management

User Interface

Security Services

Payment

<
2s
&%
£
25
28
o3

Request and
Matchmaking
Negotiation

2
b
=4
&
i

Payment Framework

Millicent

Legend
OPELIX component

Component-off-the-shelf (COTS)

| =00

COTS integration layer

Communication infrastructure

Figure 4: OPELIX architecture (full configuration)

services. In the following sections we discuss key compo-
nents of the architecture.

4.1 Inter-component communication

Some communication aspects of the OPELIX architecture
have already been discussed in Section 3. The components
of the OPELIX platform communicate and cooperate via
a common communication infrastructure. In principle any
component can communicate directly with any other compo-
nent to request its services. Two communication types can
be found in OPELIX: (1) heterogeneous communication be-
tween different OPELIX components inside one installation,
for example, when the DDC requests a signature check from
the security component, and (2) homogeneous communica-
tion between peer components of different OPELIX instal-
lations, for example, if the customer payment component
communicates with its counterpart at the provider to settle
a payment. Additionally, both types of communication can
be synchronous or asynchronous depending on the require-
ments of the components and the purpose of the commu-
nication. Synchronous communication is used in OPELIX
whenever continuation without the result of an action is not
possible or useful. For example, the DDC should wait for
a content-signing operation if it is required to send signed
content. Asynchronous communication—which in contrast
to synchronous communication requires additional efforts
for request/reply mapping—is applied otherwise. For ex-
ample, if the DDC performs a delivery operation to 10000
subscribers the requester should not be blocked but be noti-
fied upon completion. The communication patterns can be
1-to-1 or 1-to-many and since the initiator of a communica-
tion can vary most components can act both as client and
server (similar to peer-to-peer). The communicating com-
ponents may reside on different hosts even if they belong
the same installation. If communication is done via the In-
ternet then additional security requirements, network delay
and bandwidth must be addressed.

The communication technologies that are used in OPELIX
are: (1) the Java Event Distribution Infrastructure (JEDI)
[3] for intra-site notifications (asynchronous heterogeneous
communication); (2) Java RMI for service requests and com-
munication between components of one OPELIX installa-
tion (synchronous heterogeneous communication); (3) XML
via HTTP for homogeneous communication (between iden-
tical components in different OPELIX installations); (4) all
messages are XML documents. Our decision was based
on the following goals: (1) communication should be open
and rely on standards; (2) the infrastructure must be light-
weight to be usable on the client-side; (3) communication
must be efficient (large data sizes, asynchronous where pos-

sible, etc.); and (4) the best communication paradigm for
a certain communication requirement should be used. The
choice of XML-based messages was obvious since XML is
one of the base technologies of OPELIX. For homogeneous
communication we decided to use XML via HTTP because
these technologies are widely-used, open standards. For het-
erogeneous communication we considered RMI, SOAP and
XML RPC, but decided to use plain RMI because SOAP
and XML RPC impose additional installation requirements
on customers while this communication type is invisible to
the outside world.

4.2 Business Wor kflow

A major requirement derived from the analysis of Sec-
tion 2 is the need to support a wide range of potential busi-
ness processes in a flexible way. To meet this requirement
we developed the Business Offer Language (BOL) [30] which
allows the OPELIX user to describe the business process.
The Business Workflow component interprets this declara-
tive specification and interacts with (or directs) the other
OPELIX components to execute the business process as de-
fined by the user. In this way the OPELIX infrastructure
can be parameterized to virtually any business process.

BOL’s design is based on several assumptions and pre-
requisites that are presented in the following. BOL is de-
signed around the concept of information products which
denotes any type of electronic information that can be ex-
changed (plain information, payment, certificates, etc.). Ac-
tions on information products are defined as message ex-
changes between the trading partners. BOL allows the user
to declare such information products, describe the trading
partners and define the actions. The workflow itself is ex-
pressed through constraining actions by conditions on the
information product, the process state and time. So an ac-
tion may be valid in certain process states and at certain
times within the workflow execution and invalid otherwise.
BOL provides a minimal set of actions on information prod-
ucts to enable both parties to express their interest in an
information product. In case of an agreement this imposes
an obligation to perform a specific action on an information
product. Enabling both parties to express their agreement
to an exchange is part of this minimal set. This defines which
actions become obligatory in a certain process state. BOL
distinguishes between ezplicit operations which result in a
message exchange and implicit operations. The exchanged
messages can be derived from the specification. Thus the
model allows to determine the possible communications from
the specification.

To provide an idea of how the BOL works in practice we
discuss a simple example: a customer has to pay for an



information product he/she requested from an information
vendor’s web site. The relevant parts of the BOL specifi-
cation are given in the example below. For processing, this
specification is mapped onto the BOL DTD and is provided
to the interpreter as an XML document.

roles: customer, vendor;
goods:
payment(amount: NUMBER): customer — vendor;
information(url:STRING): vendor — customer;
rules:
— deliver(customer, vendor, payment(a));
delivered(customer, vendor, payment(a)) —
request(customer, vendor, information(url));

substitutions:
delivered(customer, vendor, payment(a), t) =
promised(vendor, customer, information(url));

J

First the involved roles (customer, vendor) are declared
followed by a specification of the exchanged goods (pay-
ment, information) and the direction of the exchange. The
goods are parametrized, for example, the payment with an
amount. For each product three standard actions can be
performed: request by the receiver, promise and deliver, by
the provider. Request and promise are used to agree on
the product parameters which renders an obligation for the
provider to perform the deliver action with all parameters
bound to the agreed values. As stated above, actions can
be constrained by rules which implicitly define the business
process. A rule’s conditions can refer to actions performed
on specific goods and may yield an explicit state change (re-
flected by predicates requested, promised, delivered). For
example, the rule in the above BOL example defines that
the customer may request the information after having de-
livered the payment. Additionally, implicit state changes
that are not a consequence of executing one of the actions,
i.e., that occur without exchanging a message, can be spec-
ified by substitution rules. For example, the substitution
rule in the above BOL example means that if a payment is
received by the provider, this implies its promise to deliver
the information. In case this information has been requested
earlier an obligation occurs. This is BOL’s way to express
conditional obligations.

The Business Workflow component interprets such BOL
specifications, communicates actions between the trading
partners, and triggers the execution of other OPELIX com-
ponents. In particular, the business workflow component
maintains the states of ongoing processes, maps the BOL’s
information product specifications to the encoding for com-
municating with other components, interprets and enforces
the rules specified in BOL, determines potential successive
actions based on the rules and the current state of a process,
computes the next state based on a selected action, triggers
other OPELIX components, and synchronizes state changes
with remote Business Workflow components.

BOL specifications are transformed into an execution model
by analyzing the declarations of information products and
rules. If an action is selected the next state is computed
and the remote Business Workflow component is informed
about the state change. The trading partner receives the ac-
tion, checks its validity, computes its next state, derive the
next potential action and communicates this action back to
the first trading partner. Here the same checks occur and

the next state is computed. Based on the new state the
next potential actions can be derived and visualized in the
user interface. The user may now choose how to continue or
automate these decisions. For robustness and traceability
reasons states are stored persistently.

A complete description of BOL is given in [30].

4.3 Request and Matchmaking

As described in Section 2 the matchmaking service can
be offered by providers or by intermediaries. In the sec-
ond case the specific intermediary collects and returns all
results (offers) for a single customer. Portals are already of-
fering such service, but they have 3 limitations: (1) results
are not specifically customized to the customer, (2) searches
typically are done only on the contacted intermediary (not
propagated to others), and (3) none of the existing tools
supports combined searches, i.e., searches where the overall
result depends on what is found in the individual steps of
the matchmaking process on several providers, for example,
an opera performance, e.g., “La Traviata”, a direct flight
from the customer’s home city (e.g., New York) to the city
of the performance, and a five stars hotel in that city as a
combined result assuming that each part is offered by dif-
ferent providers / intermediaries. The advantage for the
customer is that he/she just sends out a single request to a
single intermediary and the system takes care of satisfying
it.

The main purpose of the Request and MatchMaking com-
ponent (RMM) is to enable combined searches by analyzing
and combining information provided by different providers /
intermediaries. The user defines a query via the RMM which
is then given to searching agents that in turn are able to pro-
duce a result by executing multiple queries on different sites,
each of which provides part of the overall result. Search-
ing agents can either query servers remotely or perform the
queries on a remote server or they can move from server to
server to collect results (offers). The final step is construct-
ing a combined offer from other (possibly combined) offers
found. Offers are described in XML and are structured ac-
cording to some criteria defined in what we call offer types.
Offer types are also defined in XML and are known to any
party providing the matchmaking service. The customer can
be guided in building a request that is compatible with the
existing offers. The RMM translates user requests into a
Request Definition Language (RDL) statement which is un-
derstood by the searching agents (the example below shows
part of an RDL request for the opera example given above).

APPLY ‘‘//show[name = ‘‘La Traviata’’ $and$ status = ‘‘Available’?]7/
(cityldatelprice)’’ AS ¢‘performances’’
AT “‘tcp://sitel.domainl.com:10000°?, *‘tcp://site3.domain3.com:100007?

USING_POLICY ®‘complete’’

THEN APPLY ¢¢//flight[arrival/date < YperformancesOshow.datel, $and$
arrival/place = Jperformances@show.city’ $and$
departure/place = ‘‘New York’’]7/
(codel|priceldeparture/date)’’ AS ‘‘flights’’

AT ¢‘tcp://site2.domain2.com:10000°?, ...
USING_POLICY *‘complete’’

Agents interpret an RDL statement by executing the fol-
lowing steps: (1) identify all objectives to be fulfilled; (2)
for each objective, query proper sources in our example,
the sites providing information on theaters, airlines, and ho-
tels); and (3) assemble the results. To speed up requests an
agent may create slave agents to parallelize sub-parts of the
request: Slave agents are sent out while the master agent
waits for them to come back with their result on the send-



ing site. RMM consists of mobile searching agents which
are currently implemented on top of Voyager and the “sta-
tionary” components at every site that hosts the agents and
interacts with a site’s offer management component on the
agents’ behalf. At the moment we are developing an addi-
tional software layer that will decouple the agent logic from
the mobility platform to support multiple platforms. The
RMM component is described in detail in [21].

4.4 Delivery and Dissemination

The Delivery and Dissemination component (DDC) offers
a uniform interface to all services necessary to ship infor-
mation such as offers or information products to costumers.
For example, Targeting exploits the DDC to send offers to
customers, and the Business Workflow instructs the DDC
to ship an information product after having received the re-
quired payment from the customer. The DDC is intended to
comprise traditional services such as distribution via email
or download from a web server via a username/password
scheme and new approaches, for example push systems. For
the OPELIX project we developed the uniform interface in-
cluding support for integration of COTS as described above
and then enhanced the Minstrel push system [8] for infor-
mation dissemination to support a new distribution medium
type in OPELIX.

Minstrel follows the component and communication model
described in [11]. Its central central communication con-
cepts are channels that offer topic-specific information, a hy-
brid broadcasting algorithm which is supported by a comm-
unication-transparent transport system to provide scalabil-
ity to large numbers of customers. Customers can subscribe
to channels of their interest or are subscribed to them by an
OPELIX component, for example Targeting, and then can
receive a continuous information feed (for one-time delivery
email or download would be used). The hybrid communica-
tion algorithm actively notifies customers of the availability
of new data (push) and the customer then can initiate the
transfer of the possibly large payload information from its
nearest Minstrel access point. A detailed description of the
broadcasting algorithm is given in [10].

Minstrel is implemented in Java using servlets and works
with any Java servlet-enabled web server (we use Tomcat)
and the current version of the protocol employs human-
readable XML messages via HTTP. It supports active push
distribution, is scalable in terms of users and network band-
width consumption and provides secure transmission and
content authentication/integrity via SSL. It allows providers
to send executable Java code which can extend the receivers
capabilities while the customer is protected from malicious
code by the JSEF security framework [13]. Additionally it
integrates the generalized payment model [9] we developed
for OPELIX (we evaluated a pay-per-view business model
with Minstrel). A detailed description is given in [10, 8].

5. RELATED WORK

The e-commerce application domain is currently attract-
ing the attention of a plethora of researchers and practition-
ers who are proposing new approaches, tools, and standards
aiming at solving several aspects of the business phases com-
posing an e-commerce transaction. The existing proposals
can be classified in the following categories:

e Standards and protocols to support interoperability

between B2B systems. They aim at defining protocols
to enable exchange of various types of data concern-
ing products and business transactions between two
parties. This field is well-studied and exploits the ex-
periences of many companies gained from the applica-
tion of EDI. The objective is to build less expensive
EDI-like systems on top of the Internet.

e Platforms enabling the development of specific e-com-
merce applications. These platforms may offer a set of
components which can be parameterized or extended
with user code to meet an application’s requirements.
These components typically offer communication ab-
straction and typical functionality needed by e-com-
merce applications, for example, content management,
advertisement, etc.

e Applications developed from scratch by using basic de-
velopment tools. These systems typically target a spe-
cific, narrow application domain and offer a limited
degree of re-usability. We do not discuss them further.

5.1 Interoperability between B2B systems

A number of existing approaches focus on interoperability
mechanisms for e-commerce applications. In the following
we overview them and relate them to the OPELIX approach.

OBI (Open Buying on the Internet) [22] is a specification
aiming to “automate high-volume, low-dollar transactions
between trading partners”. It can be seen as a replacement
of traditional EDIs as far as interaction between buyer and
seller organizations are concerned. The specification defines
a standard purchasing process, a standard format for infor-
mation about orders, and standard methods for transmission
of orders and for managing security of the entire transaction.
The specification assumes that an agreement exists between
interacting parties that establishes all terms of a purchase.
Differently from OPELIX, OBI is therefore mainly focused
on managing transactional aspects in a well delimited con-
text. Security and authentication are very critical aspects in
this context and are described in detail in the specification.

RosettaNet is an XML-based standard for supply chain
management in the information technology and electronic
component industries. RosettaNet specifies Partner Inter-
face Processes (PIPs) that describe business processes be-
tween trading partners. PIPs are XML messages that in-
clude a business document and a business process descrip-
tion. Current PIP specifications are based on peer-to-peer
message exchange between e-business applications. To en-
able message exchange, RosettaNet defines business and tech-
nical dictionaries and an implementation framework. The
directories define a common set of properties for PIPs. The
RosettaNet Implementation Framework (RNIF) [25] pro-
vides exchange protocols for quick and efficient implemen-
tation of PIPs. RosettaNet is a standard focused on the
communication between the two trading partners whereas
OPELIX is a system that enables simple and flexible de-
ployment of i-commerce services.

BizTalk [1] is a framework proposed by Microsoft that sup-
ports interoperability between applications by encapsulating
all exchanged business data into BizTalk documents. Each of
these documents contains information such as deadlines and
retransmission requirements. The main components of the
framework are the BF(C servers that manage proper trans-
fer of BizTalk documents between two parties which may



belong to different organizations. Each organization must
have a BFC server that acts as an intermediary between
the internal information system and the other BFC servers.
Servers are responsible for (un-)wrapping business data in
BizTalk documents if the application itself is unable to do
so. Also, they are responsible for properly managing dead-
line expiration by discarding the corresponding documents,
and for ensuring reliable communication. BizTalk is specifi-
cally focused on providing advanced services for transferring
business data, while it does not make any assumption on the
structure of data being transfered. So it can be viewed as
complementary to many of the interoperability approaches
we discuss in this section.

Universal Description, Discovery, and Integration (UDDI)
[29] is a specification for distributed Web-based information
registries that offer information about business services and
their interfaces. UDDI registries can be viewed as meeting
places where a business can discover other business services
and also publish information about its services. UDDI spec-
ifies an XML schema that defines the information needed for
a business service description. Part of the service description
are the so-called “technical fingerprints” that specify a ser-
vice’s programming interfaces. A service wishing to interact
with another service must conform to the specified inter-
face. UDDI also defines the API for interacting with UDDI
registries which uses SOAP via HTTP and XML messages
as its communication mechanism. UDDI could be used in
OPELIX for registering and describing the services offered
by OPELIX providers and intermediaries.

Electronic business XML (ebXML) [4] is an initiative to
“create a single global electronic market.” ebXML stan-
dards try to combine the business process experiences of EDI
with the flexibility of XML. Similar to other approaches,
the ebXML technical architecture defines a messaging ser-
vice and a registry for sharing the information between the
trading partners. The ebXML Business Process and Infor-
mation Model distinguishes ebXML from other standards.
It enables a trading partner to describe its business process
using the ebXML’s Specification Schema in the form of an
XML DTD, or UML diagrams. ebXML heavily relies on ex-
isting standards such SOAP, UML, XML, and UDDI. UDDI
can be used for interaction with the distributed ebXML
registries. OPELIX could be extended to implement the
ebXML standard messaging service and use its Business Pro-
cess Model for sharing the process information between the
trading partners.

A large number of XML-based frameworks for e-commerce
are classified and compared in [31]. The approaches pre-
sented in this section are complementary to OPELIX. They
offer a vocabulary and a registry service that enables a busi-
ness to advertise its services and discover adequate business
partners. The vocabulary defines the ontology that enables
business partners to communicate by exchanging structured
information. Most of the listed approaches provide the defi-
nition of the communication protocol and the corresponding
message format. In principle OPELIX could exploit any of
the above protocols and approaches to guarantee interoper-
ability between providers and intermediaries.

5.2 E-commerce development platforms

E-Speak [6] is an infrastructures to build e-commerce ap-
plications designed upon the notion of a web service. It
supports B2C and B2B business models through service reg-

istration, service discovery and interaction of dynamic Web
services. E-Speak uses the concept of vocabularies for defin-
ing a service and builds its discovery functionality upon this
concept. It also enables secure communication with firewall
traversal capability. The business process supported by e-
Speak is the following: a provider registers its service with
a service directory, and a customer can find the registered
service by querying the existing directory. The service direc-
tory has the characteristics of a marketplace since it acts as
a broker, i.e., it serves as a meeting point for customers and
providers. An example service directory implementation is
provided in [5].

The main difference between the OPELIX and the e-Speak
systems results from the different project goals. OPELIX of-
fers the implementation of various services, such as advertis-
ing, negotiation, ordering, delivery, and payment, and flexi-
ble service composition. In e-Speak each service provider
needs to develop its e-Speak compliant service using the
Java e-Speak Service Interface (JESI) library. In OPELIX
we focus on the implementation of different i-commerce in-
termediaries, while e-Speak offers support for the broker-
age service only. In fact, OPELIX and E-Speak target the
same domain but at different levels: E-Speak provides an ad-
vanced communication platform for e-business but the user
has to build services from scratch whereas OPELIX offers
all domain-specific components to start building i-commerce
systems at a high level by parameterizing existing function-
ality. OPELIX includes a similar communication system as
e-Speak as described in Section 4.1 and in fact e-Speak was
one of our candidate communication platforms for OPELIX.

BroadVision’s One-To-One [2] and on Intershop’s Enfin-
ity [15] focus on selling tangible goods. They support con-
figurable business processes and provide customization for
personalizing the system. This results in several different
business models supported by both platforms, such as e-shop
models, marketplaces, and portals with special focus on per-
sonalization. In addition, both systems provide component-
based extension capabilities similar to OPELIX. The differ-
ence between the OPELIX framework and these systems is
OPELIX’s focus on information commerce and its result-
ing focus on flexible business models. This means flex-
ibility in in terms of defining processes at product level
whereas these two systems specify business rules at appli-
cation level. Furthermore, OPELIX supports the concept
of super-distribution, i.e., a buyer of an information good
(legally) copies it, distributes it to others and those can also
buy the product. Since a similar scenario is not possible
with tangible goods, the existing shopping systems do not
address this issue.

Other related platforms are Sun Microsystems’s iPlanet [16]
and iMediation’s iChannel [14]. iPlanet is a suite of products
to enable web-based e-commerce sites. Its functionalities are
a subset of One-To-One’s and Enfinity’s. iChannel is a set
of products to develop portals for (re-)seller’s but there is
not enough information available for evaluating it.

6. SUMMARY AND CONCLUSIONS

This paper has presented the domain and business pro-
cess models for information commerce, and the software ar-
chitecture for the OPELIX system that supports informa-
tion commerce applications. The domain model uses the
concept of intermediary to simplify the interactions among
providers; in principle, each intermediary can provide a dis-



tinct and separate functionality needed to support and en-
hance customer-provider transactions. Layers of interme-
diaries can provide a complete i-commerce solution. The
business process model consists of five independent phases
that may be combined in different ways and assigned to cus-
tomer, intermediary, or provider depending on the business
model.

Analysis of the domain model and the business process
model lead to a clean software architecture for the OPELIX
system presented in Section 4. The dynamic nature of i-
commerce requires ease of (re-)configuration and rapid evo-
lution. To meet these requirements, the architecture is comp-
onent-based and uses standard communication protocols.
The components support all business phases of the process
model, are intrinsically distributed, and may be reconfigured
at runtime, for example to meet changing business or perfor-
mance conditions. The components are loosely-coupled, use
open standards to communicate, and provide interfaces for
plugging in existing components such as for payment or secu-
rity. A powerful business offer language supports the declar-
ative definition of business models and the configuration of
components into a complete system supporting the business
model. The architecture combines a number of state-of-
the-art technologies: mobile agents, event- and push-based
communication, declarative business process definition lan-
guage, XML based communication over HT'TP, and a new
copyright technique for digital text.

We have recently completed a prototype implementation
of the architecture and have delivered it to two different com-
panies. They are currently using it to implement two dif-
ferent i-commerce applications. Our experience in building
the prototype implementation was surprisingly uneventful.
In particular, since the components were built by different
project members in different locations, we had expected a
longer than usual integration effort. On the contrary, the
integration of the components took almost no time. Al-
though we cannot be sure of the reasons behind this unex-
pected success, some potential reasons are due to the ar-
chitecture which supports clear separation of concerns into
distinct components and uses the relatively uncoupled event-
base communication. Another potential reason is the use of
standard tools and technologies, such as Java, HTTP, XML,
and their supporting tools. These technologies have rapidly
become standard tools of the trade and have created a com-
mon framework and language, easing communication and
interchange among implementers.

Acknowledgements

The authors would like to thank the OPELIX team, Harald
Gall, and René Klosch.

7. REFERENCES

[1] BizTalk website. Microsoft Corporation, 2001.
http:/www.biztalk.org/.

[2] BroadVision website, 2001. http://www.broadvision.com/.

[3] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
Event-Based Infrastructure and Its Application to the
Development of the OPSS WFMS. IEEE Transactions on
Software Engineering, 27(9), September 2001.

[4] ebXML Consortium. ebXML Techical Architecture
Specification v1.0.2, February 2001. www.ebxml.org/.

[5] HP e-services village website, 2001.
http://www.hpespeak.com/esvportal/index.jsp.

[6] E-speak website, 2001. http://www.e-speak.net/.

[7] Directive 95/46/EC of the European Parliament and of the
Council of 24 October 1995 on the protection of individuals
with regard to the processing of personal data and on the
free movement of such data, 1995. Official Journal of the
European Communities of 23 November 1995, No. L281.

[8] M. Fischer, M. Haberl, M. Hauswirth, and M. Umlauft.
Minstrel: a component-oriented push system for
Internet-scale information distribution, 2001. Distributed
Systems Group, TU Vienna.

[9] M. Fischer and M. Hauswirth. Towards a generalized
payment model for Internet services. Technical report
TUV-1841-01-03. Distributed Systems Group, TU Vienna,
May 2001. http://www.infosys.tuwien.ac.at/reports/
repository/TUV-1841-01-03.ps.

[10] M. Hauswirth. Internet-Scale Push Systems for
Information Distribution—Architecture, Components, and
Communication. PhD thesis. Distributed Systems Group,
TU Vienna, October 1999.

[11] M. Hauswirth and M. Jazayeri. A Component and
Communication Model for Push Systems. ESEC/FSE ’99,
September 1999.

[12] M. Hauswirth, M. Jazayeri, and M. Schneider. A Phase
Model for E-Commerce Business Models and its
Application to Security Assessment. HICSS-3/, January
2001.

[13] M. Hauswirth, C. Kerer, and R. Kurmanowytsch. A Secure
Execution Framework for Java. 7th ACM Conference on
Computer and Communication Security, November 2000.

[14] iMediation website, 2001. http://www.imediation.com/.

5] Intershop website, 2001. http://www.intershop.com/.

6] iPlanet website. Sun Microsystems, 2001.

http://www.iplanet.com/.

[17] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.

[18] M. Jazayeri. Component programming: a fresh look at
software components. ESEC 95, September 1995.

[19] M. Jazayeri and I. Podnar. A Business and Domain Model
for Information Commerce. HICSS-34, January 2001.

[20] D. Konstantas and J.-H. Morin. Trading digital intangible
goods: the rules of the game. HICSS-33, January 2000.

[21] E. Di Nitto, C. Ghezzi, M. Sabba, and P. Selvin. Using
agents in performing multi-site queries. Fifth International
Workshop CIA-2001 on Cooperative Information Agents,
September 2001.

[22] OBI consortium website, 2001. http://www.openbuy.org/.

[23] OPELIX website. OPELIX Consortium, 2001.
http://www.opelix.org/.

[24] D. S. Rosenblum and A. L. Wolf. A design framework for
Internet-scale event observation and notification.
ESEC/FSE 97, September 1997.

[25] RosettaNet Implementation Framework: Core
Specification. RosettaNet Consortium, July 2001.
http://www.rosettanet.org/.

[26] M. Schneider and T. Keinz. Proof of Authorship for
Copyright Protection in OPELIX. FElectronic Imaging €
the Visual Arts (EVA 2001), March 2001.

[27] A. P. Seth, W. van der Aalst, and I. B. Arpinar. Processes
driving the networked economy. IEEE Concurency, 7(3),
1999.

[28] C. Shapiro and H. R. Varian. Information Rules: A
Strategic Guide to the Network Fconomy. Harvard Business
School Press, Boston, Mass., USA, 1999.

[29] UDDI Techical White Paper. UDDI Consortium,
September 2000. http://www.uddi.org/.

[30] A. Wombacher and K. Aberer. A language for information
commerce processes. Third Workshop on Advanced Issues
of E-commerce and Web-based information Systems,
September 2001.

[31] Y. Zhao. XML-based Frameworks for Internet Commerce.
Department of Computer and Information Science, April
2001. Licenciate thesis.



