EPFL Technical Report 1C/2002/67

Handling Identity in Peer-to-Peer Systems*

Manfred Hauswirth, Anwitaman Datta, Karl Aberer
Distributed Information Systems Laboratory
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
{Manfred.Hauswirth, Anwitaman.Datta, Karl. Aberer}@epfl.ch

Abstract

As TP addresses have become a scarce resource
most computers on the Internet no longer have
permanent addresses. For client computers this is
usually not a big problem but with the advent of
P2P systems, where every computer acts both as
a client and as a server, this has become increas-
ingly problematic. In advanced P2P systems ad-
hoc connections to peers have to be established,
which can only be done if the receiving peer has
a permanent IP address. In this paper we pro-
pose an approach for a completely decentralized,
self-maintaining, light-weight, and sufficiently se-
cure peer identification service that allows us to
consistently map unique peer identifications onto
dynamic IP addresses in environments with low
online probability of the peers constituting the
service. For security we apply a combination of
PGP-like public key distribution and a quorum-
based query scheme. We describe the algorithm
as implemented in the P-Grid P2P lookup system
and give a detailed analytical performance anal-
ysis demonstrating the efficiency and robustness
of our approach. Our approach also can easily
be adapted to other application domains, i.e., be
used for other name services, because we do not
impose any constraints on the type of mappings.

Keywords: Dynamic IP addresses, P2P sys-
tems, identity, name service, self-organization,
self-maintenance

1 Introduction

In any distributed system where participants es-
tablish connections among each other identifica-
tion mechanisms are prerequisite to consistently
determine the end-points of communication. For

*The work presented in this paper was supported (in
part) by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-
MICS), a center supported by the Swiss National Science
Foundation under grant number 5005-67322.

example, a virtually centralized system such as
the WWW requires uniqueness of IP addresses
(or hostnames) to operate in the expected way,
meaning that the hostname part of a URL always
points to the same host. Uniqueness of IP ad-
dresses is guaranteed by the network infrastruc-
ture and ISPs. Illegal use of an IP address can
easily be detected and prevented. Also uniqueness
of names can be guaranteed efficiently by DNS
and owners of domains/hosts can be identified.
However, this is not sufficient for e-commerce, so
additional identification via certificates and secu-
rity by encryption (SSL) were added such that the
user can be sure to communicate with the party
he/she intended to. The required security level
in the identification process is determined by the
requirements of the applications (simple web site,
e-commerce, etc.), the architecture of the system
(centralized, decentralized, etc.) and the com-
munication patterns used (static connection with
known parties, ad-hoc connections).

In systems with higher degrees of decentral-
ization, mobility, and ad-hoc connections such
as P2P systems, ad-hoc networks, or systems
that support mobility, the situation is not as
well-covered because the dynamic properties of
these systems are not addressed by current Inter-
net technologies which focus on “static” systems.
In advanced P2P systems ad-hoc connections to
peers have to be established which is only possi-
ble if the receiving peer has a permanent IP ad-
dress. However, since IP addresses have become
a scarce resource, most computers have dynamic,
i.e., changing, IP addresses. This problem would
already be solved if Mobile IP [18] or IPv6 [7]
were in place and available at a large scale. They
are not yet, though, and it is unclear when this
will happen and how long a transition from IPv4
to these new protocols will take. Thus a new
means for identifying peers and consistently map-
ping these identifications onto IP addresses are
required for systems that need to handle dynamic
IP addresses in an IPv4 world.

In this paper we present a completely decen-

EPFL Technical Report 1C/2002/67

tralized, self-maintaining, and sufficiently secure
peer identification service that facilitates the con-
sistent mapping of globally unique peer identifi-
cations onto dynamic IP addresses. Peers gener-
ate universally unique identifications locally and
store them along with their public key, their cur-
rent IP address and a cryptographic signature in
the P-Grid P2P lookup system [2] on a certain
number of peers. Mapping an id onto an IP ad-
dress then is done by querying P-Grid using the
receiver’s id as the key. If a certain quorum of
identical answers is returned the mapping is con-
sidered trustworthy and the peer is contacted. If
contacting the peer fails then the peer is either of-
fline or has changed its IP address (this cannot be
distinguished). The requester can now either as-
sume that the peer is offline and give up or, in the
latter case, submit a new query to determine the
new IP address. If contacting the peer succeeds
in either case, its public key is used to determine
whether the contacted peer really is the one iden-
tified by the mapping or whether a different peer
reuses the address or a malicious peer tries an im-
personation attack. The security concept of our
approach is a combination of PGP-like public key
distribution and a quorum-based query scheme.

We describe the algorithm as implemented in
the P-Grid P2P system and give a detailed an-
alytical performance analysis demonstrating the
efficiency and robustness of our approach. The
algorithm is designed to operate in environments
with low online probabilities of the peers consti-
tuting the identification service. We apply the
our identification service in P-Grid itself to ad-
dress the problem of changing IP addresses. Our
approach also can easily be adapted to other ap-
plication domains, i.e., be used for other name ser-
vices, because we do not impose any constraints
on the type of mappings.

The paper is organized as follows: We start
with a short description of P-Grid whose require-
ments were the original motivation for this work
and briefly discuss dynamic IP addresses, some
scenarios, and some security implications in Sec-
tion 2. Section 3 then describes our algorithmic
approach to address the identification problem
which is then illustrated by a detailed example
in Section 4. Section 5 presents the pseudo-code
of the required algorithms that will be analysed
in Section 6. The results of the analysis will be
discussed in Section 7. In Section 8 we position
our approach regarding related work and give our
conclusions in Section 9.

2 Problem
motivation

statement and

To motivate our approach and show its practi-
cal background we briefly present the P-Grid P2P
system in this section. Then we discuss dynamic
IP addresses in more detail and give some scenar-
ios in which identification is required.

2.1 P-Grid in a nutshell

P-Grid [2] is a peer-to-peer lookup system based
on a virtual distributed search tree: Each peer
only holds part of the overall tree, which comes
into existence only through the cooperation of in-
dividual peers. Searching in P-Grid is efficient
and fast even for unbalanced trees [1] (O(log(n)),
where n is the number of leaves). Unlike many
other peer-to-peer systems P-Grid is a truly de-
centralized system which does not require central
coordination or knowledge. It is based purely on
randomized algorithms and interactions. Also we
assume peers to fail frequently and be online with
a very low probability. Figure 1 shows a simple
P-Grid.

query(6, 100)

06
stores data. stores data stores data. stores data. stores data. stores data.
with key with key with key with key with key with key
prefix 00 prefix 00 prefix 01 prefix 10 prefix 10 prefix 11

Fig. 1. Example P-Grid

Every participating peer’s position is deter-
mined by its path, that is, the binary bit string
representing the subset of the tree’s overall infor-
mation that the peer is responsible for. For ex-
ample, the path of Peer 4 in Figure 1 is 10, so
it stores all data items whose keys begin with 10.
For fault-tolerance multiple peers can be respon-
sible for the same path, for example, Peer 1 and
Peer 6. P-Grid’s query routing approach is sim-
ple but efficient: For each bit in its path, a peer
stores a reference to at least one other peer that
is responsible for the other side of the binary tree
at that level. Thus, if a peer receives a binary
query string it cannot satisfy, it must forward the
query to a peer that is “closer” to the result. In
Figure 1, Peer 1 forwards queries starting with 1
to Peer 3, which is in Peer 1’s routing table and
whose path starts with 1. Peer 3 can either satisfy

EPFL Technical Report 1C/2002/67

the query or forward it to another peer, depend-
ing on the next bits of the query. If Peer 1 gets
a query starting with 0, and the next bit of the
query is also 0, it is responsible for the query. If
the next bit is 1, however, Peer 1 will check its
routing table and forward the query to Peer 2,
whose path starts with 01.

The P-Grid construction algorithm [2] guaran-
tees that peer routing tables always provide at
least one path from any peer receiving a request to
one of the peers holding a replica so that any query
can be satisfied regardless of the peer queried. Ad-
ditionally it guarantees that a sufficient number of
replicas exist for any path and that the peers rep-
resenting a certain path also know their replicas.
Thus the routing tables will hold also multiple ref-
erences for each level which the routing algorithm
selects randomly [2].

P-Grid supports updates of the stored, repli-
cated data via a push/pull strategy with prob-
abilistic guarantees [9] which allows us to store
and change the mappings required for handling
dynamic TP addresses in P-Grid itself. To im-
prove efficiency each peer stores the mappings it
knows in a cache which is consulted before issu-
ing a query. If a cache entry has become stale
this can be detected by the signature mechanism
we propose. Although storing the mappings inside
P-Grid for use inside P-Grid itself looks like a typ-
ical hen-egg problem, we show in the following sec-
tions that our approach will work provided that no
catastrophic failure occurs that would render the
system dysfunctional anyway. We will show how
we use the same mechanisms for implementing our
identification approach and for “self-healing” the
directory holding the identification mappings.

2.2 Dynamic IP addresses

The available IPv4 address space is fairly limited
and fragmented inefficiently. Although approxi-
mately 232 addresses are available, in reality this
number is considerably lower for historical rea-
sons. The address space is divided into subranges
(class A, B, and C networks) that are assigned to
one authority. Since most of the networks have
already been assigned but by far not all of the
TP addresses are used, a shortage of IP addresses
has occured. Additionally TP addresses for special
use (e.g., broadcast addresses) and multicast ad-
dresses further diminish the available addresses.
IPv6 would solve the address shortage problem
because it offers an address space of 2128, The
current address shortage was one of the driving
forces to develop the Dynamic Host Configuration
Protocol (DHCP) and Network Address Transla-
tion (NAT).

DHCP [10] was originally developed to auto-

matically configure the networking software of
workstations. Assuming that the stations are not
online all the time this functionality can also be
used to exploit a limited pool of IP addresses
more efficiently. The simplified working pattern
is that a DHCP server maintains available IP ad-
dresses. Typically upon boot-up a client sends
out a DHCP broadcast message to find a DHCP
server and requests an IP address and the DHCP
server sends the assigned IP address possibly
along with some additional information such as
network mask, default gateway, and nameserver.
The client may then use the IP address for a time
period defined by the server (lease time). If the
lease time expires the client has to send a new re-
quest and may either get a new lease time for the
same address or a new IP address. Most DHCP
servers can be configured to assign the same IP ad-
dress for certain Ethernet addresses so that clients
can have a permanent address. However, the stan-
dard case is that the IP address changes.

Network Address Translation [13] attacks the
address problem more directly. The basic concept
is that a NAT router maps non Internet-routable
IP addresses! onto routable IP addresses back and
forth. The most frequently used configuration is
that the NAT router has an official IP address and
all the computers in the local network have non-
routable ones. The router then assigns a unique
port to each of the non-routable addresses thus
making it possible to route packets coming in from
the Internet to the correct local address. This
works nicely if the connections to the Internet are
initiated by the local computers. However, it is
not possible for a peer on the Internet to initiate
a connection to another peer that is behind a NAT
for the obvious reason that the addressee does not
have a routable address so Internet routers just
drop the received packets.

Many ISPs combine both technologies. In the
following we focus on the problem of dynamic
routable addresses. NAT is beyond the scope of
this paper. NAT is a general problem of P2P
systems because it only supports uni-directional
connection establishment. This must and can be
addressed but is subject to future work.

Besides providing a larger address IPv6 [7] also
offers a solution for the issue of mobility (i.e.,
dynamic addresses) which we address in our ap-
proach. However, IPv6 is not in place at the mo-
ment and it is rather unclear when it will be. Also
MobileIP [18], an IPv4-based solution for mobil-
ity which would remedy many problems is not de-
ployed yet (and possibly will never be).

Consequently, although enabling technologies

110.0.0.0 — 10.255.255.255 (class A), 172.16.0.0 —
172.31.255.255 (class B), 192.168.0.0 — 192.168.255.255
(class C)

EPFL Technical Report 1C/2002/67

exist but are not deployed, we have to address
the issue of identity and dynamic IP addresses in
P2P systems.

2.3 Scenarios

Unlike many popular peer-to-peer systems such
as Gnutella [6] (constrained broadcast, breath-
first) or Freenet [5] (depth-first), P-Grid has a
much more “directed” search strategy to min-
imize efforts. Particularly it uses randomized,
near optimal routing tables for storing its dis-
tributed access structure. The routing tables and
the distributed index hold unique peer identifica-
tions. Ultimately, these peer identifiers have to
be mapped onto IP addresses consistently. If all
peers have static IP addresses this is no problem
because the IP addresses (or the corresponding
hostnames) can be used. However, this is not re-
alistic in a real-world setting and motivated the
approach presented in the following sections. Typ-
ically nodes have a temporary network address as-
signed by DHCP [10] or do not have a routable IP
address at all in the case network address trans-
lation (NAT) is used. Therefore it is necessary to
address to following problems:

1. How can universally unique identifiers be
mapped onto physical addresses in a secure,
decentralized, and efficient way?

2. With the possibility of changes of physical ad-
dresses a peer must be able to detect whether
it is still talking to the same entity it intends
to talk with. For P-Grid this translates into:

(a) Peer p; goes offline and a different peer
p2 gets p1’s IP address. The other peers
must be able to detect this change and
react accordingly.

(b) A peer goes online again with a new
IP address. The other peers must be
able to detect this, update their routing
tables accordingly, and check identifica-

tion before downloads of indexed data.

Gnutella is not affected by the first problem
since peers actively announce their availability
but at the cost of high bandwidth consumption
because of its constrained broadcast approach.
Freenet and any other system that uses ad-hoc
connections suffers from the same problems of dy-
namic IP addresses as P-Grid.

However, any peer-to-peer system actually
should address the second problem for security
reasons. Otherwise it is very simple to de-facto
shutdown a system by a variation of rather sim-
ple denial-of-service (DOS) attacks. For such a
DOS attack a malicious node could impersonate

another peer or provide wrong query hits or rout-
ing information thus putting high load on other
peers or simply not route messages at all. These
are only some security problems of current sys-
tems. A comprehensive discussion, however, is
beyond the scope of this paper.

The following sections will discuss our approach
and provide an analysis of its performance.

3 Approach

Each peer p is uniquely identified by a universally
unique identifier (UUID) Id,. This identifier is
generated once at installation time by applying a
cryptographicly secure hash function to the con-
catenated values of the current date and time, the
current IP address addr, and a large random num-
ber. At bootstrap each peer p also generates a
private/public key pair D,/E, once.

In P-Grid routing tables and the index hold
only these identifiers. Each peer p additionally
has a cache of mappings (Id;, addr;, T'S;) (T'S; de-
notes a timestamp) that it already knows.

Then the algorithm for handling dynamic IP
addresses works as follows (inserts and updates
are done according to the algorithm presented in

[9)):

Bootstrap
1. p generates Id,, D,/E,.

2. Upon the first startup p determines its cur-
rent IP address.?

3. p inserts the tuple
(Idp,addry, E,, TSy, Dp(Idy, addry, E,, T'Sp))
into P-Grid using Id, as the key (TS, pre-
vents replay attacks). Inserting in P-Grid
means that the request is routed to a peer
R; € ®,. R, is the set of replicas responsible
for the binary path using Id, as the key
value (path(Id,)). If Id, already exists in
the P-Grid (though this is very unlikely) p
is notified. If so, p generates a new Id, and
repeats this step.

4. The previous step is repeated R,;, times and
p waits for confirmation messages from R, ;n
distinct peers to prevent a malicious peer in
R, from distributing false data to the other
replicas in %,,.

5. As a result of the previous 2 steps the map-
ping will be physically stored at peers in R,
Based on the randomized algorithms that P-
Grid uses we can assume that the individual

2The IP address must be routable and reachable, i.e.,
not behind a firewall.

EPFL Technical Report 1C/2002/67

replicas R; € R, are independent and they
collude or behave Byzantine only to a degree
that can be handled by existing algorithms.

Peer startup

1. p starts up and checks whether its addr, has
changed. If not the algorithm terminates.
Otherwise the following steps are taken.

2. p sends an update message
(Idp,addr,,TS,, D,(Id,,addr,,TS,)) to
the P-Grid, i.e., a new mapping and a
signature for this mapping.

3. Upon receiving the update request the
R; check the signature by verifying that
(Ep(Dp(1dy,addry,,TS,)).I1d, = Id, (thus
only p can update its mapping) and TSk, <
TS, (to prevent replay attacks). If yes, the
new mapping is stored, otherwise an error
message is returned.

Operation phase

This phase denotes the standard operation of
P-Grid, i.e., p is up and running, has registered
an up-to-date mapping (Id,,addr,,T'S,) and is
ready to process queries and update requests.

1. p receives a request @) from a peer gq.

2. In case p can satisfy () the result is returned
to g. Otherwise p finds out which peers py to
forward the query to according to P-Grid’s
routing strategy. Then it checks its routing
table and retrieves (Id,,,addr,,,E,,,TSy;)
which had been entered during the construc-
tion of P-Grid.

3. p generates a random number r, contacts py
and sends FEp (r). As an answer p; must
send (D, (Ey,(r))) and q can check whether
Dy, (Ep,(r)) = r. If yes, py is correctly iden-
tified, i.e., p really talks to the peer it intends
to, and @ is forwarded to py.

4. If not, then ps has a new IP address (the case
that somebody tries to impersonate py is cov-
ered implicitly by the signature check above)
and p sends a query to P-Grid to retrieve the
current addry, using Id,, as the key.

5. p collects all answers t; =

misinformed or malicious peers, i.e., checks
whether a certain quorum of the answers is
identical (R, is defined by each individual
p according to its local requirements for
trustworthiness of the reply). Otherwise the
query is repeated a certain number of times
before aborting.

(a) As an optimization the quorum can be
avoided under certain -circumstances.
If p already knows E,,, e.g., from
the construction of the P-Grid or
because it has already done a certain
number of (quorum-based) queries
for E, that have resulted in iden-
tical answers, so that it can assume
that its Ep,, then it can immedi-
ately check the validity of the answer by
E, (Dy,(Idy,,,Ep,,addry,, TSy,)).Id,,
t;.Dp,.

The scheme can be further optimized
(and made more robust and secure) by
having all peers store the E,’s that they

(b)

receive.

6. Now p can proceed with step 3. And
in case this is successful p enters
(Idy,,addry,,E, ,TS,,)) in its local
cache.

4 Example
4.1 Example scenario
Figure 2 shows an example P-Grid.
LEGEND
Fﬂ'&ntly online
H’aenlly offnline 0 1
Up-to-date cache
1 :2
Staleéhe 00 01 10 11
[2[121314
000 001 010 011 100 101 |o :1u
10 :11,13
12 [12134
D[z OEE 45 (@67 AD[es |[13[r0m (1305213
1:1213 ||1 :82 1 :212 11112 0 :47 0 :59
01 :5,10 01 :3,10 00 :94 00:19 11:212 11:212
001: 9.4 000: 1.7 011: 3,10 010: 5,14 101: 8,13 100: 6,11
DIE (D23 [®[25 |[@A0][e7 GIFR 8)| w11
1 :12,13 1 :613 1 :813 1 :68 1 :13 0 :49
01:514 01 :10,14 00:79 00:17 11:212 1:212
001: 94 000: 1,7 011: 3,10 010:5,14 101:8,13 100: 6,11

Fig. 2. P-Grid before Query(01%*) at P

(Idy,, Ep,,addry,,,TS,,, D, (Idy,, Ey,,,addr,,,TS,,))

it receives from the R; € %,,) (if extended
security is required then the R; should sign
their answers, i.e., send (t;, Dg,(t;))). p has
to collect at least R,,;, answers to detect

Peer P; is denoted by i inside an oval. On-
line peers are indicated by shaded ovals, while the
unshaded ovals represent off-line peers. We will
use a query Q(01x) at P; for our example. Py

EPFL Technical Report 1C/2002/67

holds the public key and latest physical address
mapping about P; (updated by P;). These are
shown in the shaded rectangle in the upper-right
corner. We use P-Grid as a distributed access
structure for storing not only “ordinary” data, but
also information about peers participating in the
P-Grid. These may be the peers’ public keys or
latest “identity-to-physical address” mapping in-
formation. P-Grid queries are transparent to the
kind of information that is being searched. In this
example, we follow the convention that the peers
are represented by paths of a length of 4 bits. For
example, information about P; can be obtained
by Q(P), i.e., @(0001). Under this convention,
since Py is responsible for the search path 000,
it stores information relevant to 000, and routing
references for paths starting with 1, 01 and 001, so
that queries with these prefixes may be forwarded
to respective peers for further processing. These
references to other side of the P-Grid subtrees at
all depths form Pr’s routing table. The cached
physical address of these references may be up-to-
date (for example Pj5) or stale (for example, Fj).
Stale cache entries are underlined. Peers, how-
ever, do not realize that the cached entries are
useless until they try to use them. The public key
infrastructure discussed in Section 3 is used to de-
termine whether the contacted peer is indeed the
peer which was intended to be contacted. This au-
thentication scheme takes care both of stale caches
as well as impersonation. The underlying assump-
tion here is that the public key is generated once
during the bootstrap and is not changed after-
wards. The public key may be revoked and/or
renewed using messages signed with the last pub-
lic key.

A peer P, decides that it has failed to contact
peer P; if one of the following happens:

e No peer is available at the cached address.
In this case, P, trivially determines that P,
is unavailable.

e The contacted peer fails in the
authentication[21]. If any peer Py is
present at the physical address as cached
by P, for P;, P, will use P,’s public key
to verify whether P, is indeed P;. If Py
fails the identity test, P, concludes that
it has failed to contact P;. Since only P;
knows its private key, only P; can pass the
identity test. = Vulnerability and possible
attacks in using this scheme may arise from
the weaknesses of a decentralized public
key infrastructure. The in-depth security
aspects of our public key infrastructure is
subject to complimentary work and beyond
the scope of this paper. However, similar
systems such as PGP [15, 19] using tran-

sitively certified public keys have gained
wide-spread acceptance. = Those schemes
provide probabilistic guarantees by the use
of multiple paths, whose resilience against
attacks is analogous to that of our approach
of storing information at multiple replicas.

4.2 Progress of Query (Search)
The search in P-Grid can be classified as:

Isolated-Query: A peer tries to reply to this
query if it has the results stored locally, or
else forwards the query to at least one of
the peers in its routing table according to P-
Grid’s routing algorithm. If none of these
peers can be contacted, the query is aban-
doned and fails.

Recursive-Query: Unlike the isolated-query, if
a peer fails to contact any of the peers in
its routing table, it initiates a new query to
discover the latest “identity-to-address” map-
ping of the peers in the routing table, and if
such a peer can be located, the query is then
continued (forwarded).

These two algorithms are elaborated in detail in
Section 5.

While the P-Grid is in the state as shown in
Figure 2, assume that P; receives a query Q(01x).
The query may be for searching any information
in P-Grid, either information about some partici-
pating peer or any other information. In this ex-
ample situation, P; fails to forward the query to
Ps and P4 since the cache entries are stale. The
Isolated-Query algorithm fails immediately.

In the recursive query version, a peer that has
failed to contact any of the peers to which it could
forward the query, first tries to discover the latest
addresses for those routing table entries. In our
example, Py initiates Recursive-Query(Ps), i.e.,
((0101), which needs to be forwarded to either
P5 or Pi4. This fails again. P; may then initi-
ate Recursive-Query(Py4), i.e., (Q(1110)), which
needs to be forwarded to Pj2 and (or) Pi3. Pia is
off-line, so irrespective of the cache being stale or
up-to-date, Q(P14) fails to be forwarded to Pia.
P,3 is online, and the cached physical address of
Py3 at P; is up-to-date, so Q(P14) is successfully
forwarded to Pi3.

Py 3 needs to forward Q(Py4) either to Py or Pys.
It fails to forward it to Pp3. Further, P;3 fails
to forward it to P» because its cached entry for
P, is stale. P;3 thus initiates another sub-query,
namely Recursive-Query(P;), i.e., (Q(0010)). It
may also initiate Recursive-Query(Pi3) as well.

From Pi3, Q(P,) is forwarded to Ps. From P,
Q(P,) is forwarded to one of P; and Py. Assume

EPFL Technical Report 1C/2002/67

Py replies (though in parallel it may be forwarded
from P; to P;, Py and then eventually be an-
swered). Thus Py3 learns P»’s location and up-
dates it in its cache. Pj3 also starts processing
and forwards the parent Recursive-Query(Py4) to
P,. P, provides Py4’s up-to-date address, and P;
updates it in its cache (directly or via Pj3, de-
pending on the implementation).

Having learnt Py4’s current physical address, P;
now forwards the original query @Q(01%) to Pi4. In
this case, not only is the original query satisfied,
but also P; has an opportunity to learn and up-
date Ps’s physical address, since P4 is responsible
for Ps’s latest physical address. Thus, apart from
successfully replying to the original query, P; up-
dates the physical address for P;4, and possibly of
P;5. Further, because of the initiated child queries,
P;5 updates its cached address for P,. The final
state with several caches updated after the end of
Q(01x) at P7, is shown in Figure 3.

After Query(01*) @ P,

(D214

000, 0 114

10 11113
(A2 [121314

@R (923 [+ |[@]er Do |[A3[zom 20 ;3

11213 |[1 :82 1212 |1 c1p2 0:47 0 :59

01:510 ||01:310 00:94 00:19 1212 |[un:i2w

001:9.4 000:17 011:310 || 010:514 101813 || 100:611

@K (D23 (B[4 |[A0]er (&2 |[B[won

101213 |[1 1613 1:813 |1 :68 1013 0 :49

o1:514 | 011014 00:79 00:17 ni2e |[1:i21

001:9.4 00017 011:310 || 010:514 101:813 || 100:611

Fig. 3. P-Grid after Query(01%) at P;

5 Query (Search) algorithms

5.1 Notation and primitives

The example in Section 4 has illustrated the
strategies to react to stale entries in caches for
routing table entries. The non-recursive version
(Isolated-Query) succeeds as long as at least one
entry is up to date, and the concerned peer is on-
line, when a query needs to be forwarded. Thus its
functionality is dependent on the redundancy of
the routing tables. The recursive version is meant
to further enhance the robustness, and thus tries
to find an online peer, even if the entry in the
routing table is stale. Thus, intermediate failures
trigger new queries to locate the peers (their latest
address). Consequently, with the additional effort
of recursion, it reduces the probability of failure
of individual original queries and implicitly up-
dates some of the stale cache entries (self-healing).

These algorithms deal with dynamic physical ad-
dresses and offline/online behaviour of peers, and
are in effect extensions to the original search strat-
egy of P-Grid described in [1, 2] (summarized in
Section 2.1).

In the following, ®,,:» denotes the set of peers
(replicas) which has the result for a query seeking
information about the path path. If a node P,
receives a query Q(path) and P, ¢ Rpeep then it
tries to route (forward) the query to some peers in
its routing table. The set of corresponding entries
in its routing table is then denoted as Rpq¢pn,0- We
use the alternate notation of ®p,, Q(P;) and Rp, ,
if the query is about any peer P;.

The following section provides the pseudo-code
of the algorithms to address the issue of stale
physical addresses cached for each entry in Rp, 4
at P;. We devise two algorithms: Isolated-Query
(Algorithm 1) terminates if all cache entries are
stale or the peers to contact are offline; Recursive-
Query (Algorithm 2) in contrast triggers child
queries upon failure at any stage, until it succeeds
(in an implementation, it is necessary to use a
time-to-live, so that cyclic recursions do not per-
petuate). The recursive query is not isolated be-
cause failures to forward searches at intermediate
stages and subsequent child queries may lead to
updates of stale caches at various peers, thereby
self-healing the overall P-Grid.

5.2 Pseudo-code of algorithms

For simplicity some details have been deliberately
omitted from the pseudo-code: To return the final
reply to the original requester directly, its identi-
fier and physical address can be included in the
query and to avoid non-terminating cycles a time
to live (TTL) would be included in the recursive
algorithm.

Algorithm 1 Isolated-Query(path) at P, (ana-
lyzed in Section 6.1)

1: if Py € Rpeen then

2: return(success/reply to query)

3: else

4: for all P; € Ry54p,4 do

5: if P; is really at cached physical address for P;
then

6: forward Isolated-Query(P;) to Pj;

7 break; {hop successful at P,}

8: end if

9: end for

10: return(failure in forwarding query);

11: end if

EPFL Technical Report 1C/2002/67

Pon Probability of peers being online.

Ddyn Probability of local cache entries being stale.

W Probability that an isolated attempt to contact any particular peer P;
by peer P; using its local cache information fails.

€n Probability of failure in P-Grid query forwarding from one peer to any
other peer specialized for the other half of P-Grid search-subtree.

€ Probability of failure of a query in P-Grid.

n Number of leaves in P-Grid.

T Number of references for the other half of the subtree in P-Grid routing
tables for each depth (may be different at different depths and peers).

A (A) Expected number of attempts required for a query (along with the
achieved error rate).

Dpayn—jo = Mw/oPdyn | Increase in the probability that the local cache gets stale without any
rectification method in place. n,,/, is the fractional change with respect
to the present pgy, without rectification.

Table 1: Notation used in the analysis

Algorithm 2 Recursive-Query(path) at P, (ana-
lyzed in section 6.2)

1: Isolated-Query(path);
2: if returned(failure) then
for all Ps € Rpaip,q do
Recursive-Query(Ps);
if success then
forward Recursive-Query(path) to Ps;
end if
end for
if failure for all children queries then
10: return(failure in forwarding query);
11: end if
12: end if

6 Analysis

Table 1 summarizes the notations used in our
analysis.

6.1 Analysis of an isolated

search/query in P-grid

In this subsection we analyze the effect of peers
going off-line and then rejoining the P-Grid com-
munity with possibly a different physical address
on P-grid searches. In [1, 2] we analyzed the effi-
cient search from an abstract logical level, ignor-
ing the dynamics of underlying network topology
which is taken into account here.

When a peer P, needs to forward a query Q(F;),
it may fail to do so because all the peers in Rp, 4
to which the query may be forwarded are off-line
or their cached physical address is stale (or both).
If the overall offline probability of peers is 1 —pon,
and the probability that the cache at P, for each
peer entry is stale is pgy,, then the probability
that an isolated attempt at P, to reach a particu-
lar peer in Rp, 4 is successful (denoted by 1—p) is

i

Pon(1 — Payn). Likewise, the failure probability of
an isolated attempt to forward a query (denoted
by H) is 1 _pon(l _pdyn)-

Thus p represents the coupled probability that
a peer is off-line and /or the physical address asso-
ciated with any peer P, cached in P, has changed.
Consequently when attempts are made to contact
r random peers from the references Rp, ; at P,
the probability that all r attempts fail, is u". So,
given a per-hop error tolerance €y, we need a min-
imum of r references to which a search may be
forwarded, such that p" < €;,. Then the expected
number of attempts to achieve a failure probabil-
ity less than or equal to € for a single hop during
the routing is A, such that u?<s < €,. Thus

we need at least A, = (%1 references for the

other half of the P-Grid subtree (at any arbitrary
depth to which the query has already propagated)
to achieve a given €, (and vice versa).

With a e, failure probability for query routing
(at hop 1), the probability of successful routing to
a desired leaf node is Hil(l — €p,;) where H is
the required number of hops to reach the particu-
lar leaf node in question. If there are at least A,
references available at any hop then e, > €, Vi,
and thus €, determines the worst per-hop failure
probability. We use this ¢, for all hops, thus de-
termining a worst case average performance in the
remaining analysis.

If €, is achievable at every hop (enough refer-
ences available) then the the success probability is
1—e= (1—ep)" where H is the number of times
the query needs to be forwarded to reach the leaf
node. Thus, the expected value of the achievable
success probability is 1 — e = Eg[(1 — €;,)*]. For
a general P-Grid, distribution of H and thus the
expectation is difficult to evaluate, but for a bal-
anced P-Grid, H is binomially distributed, and we

EPFL Technical Report 1C/2002/67

get 1 —e = (1 — <£)!92" The expected number of
attempts then is A = lg;”AEh.

In the following we will use the notations e and
A for the failure probability of a single original P-
Grid query and the expected number of attempts

(message exchanges) required for it to succeed.

6.2 Recursive search for peers

The analysis in this section is for a balanced P-
Grid tree. Given the model as in the previous sub-
section, if there are r references to choose from,
the probability that none of the r references are
reachable occurs with a probability of u". In such
a case, P, needs to initiate recursively a query for
P, € Rp, 4. If it discovers a physical addresses dif-
ferent from that in its cache, it updates its cache,
and contacts the peer at the new address. It is
of course possible that the peer is off-line, and
thus not available even at the updated address.
The probability that a query which needs to be
forwarded further will trigger a recursive search
is u”. For a random incoming query with b bits
unresolved, the probability that it needs to be for-
warded is 1 — 2~ (probability under binomial dis-
tribution that it cannot be answered locally). The
incoming queries may be unresolved with 0 bit to
lgon bits (under assumption of load balancing, b
is uniformly distributed), and thus the expected
probability of forwarding an incoming query is

b=0

1+ 1gan

2(1 — 0.5 +lg2m)
1+1gan

ng"(]_ _ 2—b)

Ey[1-27% =

1-—

When recursive queries are initiated at Py, these
queries will have the following fate (as summa-
rized in Figure 4):

1. The child queries will need the routing ta-
ble at the same depth at which failures had
occurred (thereby creating the child queries).
This will happen for an expected —— of
the r child queries.

1+igon
These queries will fail
definitely.

2. An expected ﬁ of the r children queries
can be locally answered, and will thus always
succeed. Still, with a 1—p,,, probability, each
of these peers may not be contactable, simply
because they are offline.

3. The remaining %2;1) queries need to be

forwarded, and will each have a failure prob-
ability of e. Even if the forwarded queries
succeed, with a probability of 1 — p,,, each
of these peers still may not be contactable.

Ig,n

Expected children queries
which will need routing at
same level = r/(1+lg,n) / \\

\
\
Al references failed
(rigge\’?mg child queries

\
\
\
\
\

Expected children queries
which will need routing at
other levels = r(lg,n -1)/

\
\ (Ig,n +1)
\
Expected children quefies
which can be locally
answered =r/(Ig,n + 1)

Fig. 4. Fate of children queries of recursive
algorithm.

Thus probability of failure of a single hop €, of
the recursive version of the algorithm is:

2(1 — 0.5t92n+1) 1
lgan +1 1+ 1gan

en = p(l-

]_ r
— (1 - TFigon
Ay lgzn(Pon) T2

(Iga(n) — 1)
14 1gan

(e+ (1 —e)(1—pon))

Solving 1 —e = (1 — £)'92" for € gives the prob-
ability of failure of a recursive query in a balanced
P-Grid.

Now, at each hop, if r is the number of attempts
(messages) made for an isolated query, then the
expected number of attempts for a complete iso-
lated query is ”922”. In using recursion, at each
hop we are using

_ 2(1—0.5152"+1)) lgan—1

Ah =r+ MT(l lgan+1 lgan+1

attempts (ignoring the attempts which termi-
nate locally), where A is the total effort needed
for completing a recursive query. Thus A =
0.51gonAp,. Consequently, the additional effort for
recursion compared to ar} isolated query is by a
O O rtpan(1 T ey

An issue which we have ignored in the pseudo-
code and analysis of the algorithm, is that of hav-
ing orphan child processes, even when the original
query has been satisfied. Cycles are also possible.
However, these can easily be dealt with using a
time-to-live, which is decremented whenever re-
cursive child queries are initiated, thus ensuring
that both loops and orphan queries die out.

r(lga(n)—1)
T+igon)

6.3 Self-maintenance—a first order
analysis

The salient aspect of the recursive algorithm is
that failures trigger a process of self-healing of the

EPFL Technical Report 1C/2002/67

whole P-Grid. In fact, even if the recursive algo-
rithm is not used, isolated queries may be explic-
itly used to update the cached information about
peers’ latest physical addresses. A totally self-
organizing system needs to be self-maintaining
also, and with such a mechanism to update cached
entries, P-Grid becomes self-healing. Here we give
a first order analysis of this property. The anal-
ysis is first order because we ignore the overall
dynamics of the system, and only focus on how
to maintain pgy, at a given value, assuming that
over a period of time, it has a fixed rate of change.
While we analyze the effect of cache updates lo-
cally, we assume that there are no other queries
or cache update processes running in parallel in
the P-Grid (apart from possible child queries of
the original ancestor query). As a matter of fact,
such unrelated queries will in itself trigger self-
maintenance, consequently improving the perfor-
mance of individual queries.

From Section 6.2 we know that the probabil-

o elgon+l
ity of recursion is pu"(1 — %). Prob-

ability of success of each of the child queries

is 7 +llg2n + (lg"’(ﬂ;g?fll_ﬁ). Assuming that the
child queries are issued in parallel (without
waiting for individual child queries to succeed
or fail), probability of repair is pgypp” (1 —

2(1-0.5'92"+1) \ 14 (Igs(n) —1)(1—¢) i
Igan+1) 1+igan , where payy, is the

fraction of references with stale cached physical
addresses (other references are up-to-date and

. . Aden—w/o
need not be repaired). Thus if —===f2 =
v

Nw/o > 0 is the rate at which pgy, deteriorates
with no rectification measures in place, then, be-
cause of the self-healing feature of our recursive
algorithm, we obtain the following rate equation:

A 2(1 — 0.5'92n+1)

Pdyn T
P w/o — 1—
1+ (Iga(n) —1)(1 —¢)
1+ 1gan

For a sustainable (stable) system, we need

A . ..
% to be zero, or negative, determining the
yn

critical value of n,,/, which can be tolerated by
P-Grid. The Results will be elaborated in Section
7.

The analysis of this section is for the case
when an answer from only one replica is obtained.
However, for probabilistic reliability a quorum
is required. The same query needs to be ini-
tiated multiple times in order to obtain replies
from multiple replicas, in order to achieve a quo-
rum, because the replicas use lazy update algo-
rithms [9] and thus may not all be in a consis-
tent state. From a security perspective, the quo-
rum is more essential to thwart impersonation or

denial of service attacks instigated by malicious
peers. Use of a quorum can thus mitigate the
effects of both individual and limited collabora-
tive denial-of-service attacks, apart from unin-
formed peers. Analysis and results for creating
a quorum under a model of replica consistency
and peer maliciousness has been excluded from
the paper purely because of space constraints,
and will be included in complementary and fu-
ture work. However, to give an idea of the ex-
tra effort we provide the number of independent
successful queries that need to be executed in or-
der to form a quorum of R,,;,, assuming that
R, > Rpin replicas are online during the period
when the queries are executed. Since the random-
ized routing in P-Grid means any of these replicas
are equally likely to be reached, the problem is
then reduced to that of the “Coupon Collector’s
Problem” [17]. The expected number of queries
is then given as R,,(HarmonicNumber(R,,) —
HarmonicNumber(Ron — Rmin))-

7 Analytical results

We investigate the performance of queries with-
out and with recursion, and study the improve-
ment in the success rate and the additional ef-
fort incurred, as the system parameters change.
Due to space limitation we give results for only
the case where the P-grid tree has n = 27
leaves, and all peers have 4 references cached at
any depth. Further we consider only the cases
when on an average 60% and 80% peers are on-
line (po, = 0.6,0.8). We have varied pgy, and
observed the failure probability of non-recursive
queries increases rapidly with an increase in pgyr,.
With recursion, however, the failure probability
is significantly lower, since intermediate failures
trigger recursive queries, leading to self-healing
effects, and thus to the eventual success of the
original query. The additional effort required is
marginal for even a moderately high value of u
(the effective probability that a peer is unavailable
after an isolated attempt), but when p is large
(> 0.5), the effort starts increasing rapidly. Such
a behaviour is understandable, since the larger the
number of recursive child queries, the greater is
the chance of creating loops. Benefits of the recur-
sion, however, are dual, since apart from reducing
the probability of failure it induces self-healing.
In the following we elaborate our results. In all
the Figures of this section, the X-axis represents
Pdyn, the probability of stale entries in the local
cache.

In Figures 5(a) and 5(b) we compare the failure
probability (Y-axis) of the isolated and recursive
query algorithms with the variation of pgyy, for the

10

EPFL Technical Report 1C/2002/67

two cases of py, (0.6 and 0.8).

0.4
Isolated query
Recursive query -------
Probability of peers being online p_on = 0.6 /
Number of replicas r = 4
Depth of P-Grid d = 7
03
2
3
3
3
g 02
o
3
T
&
0.1
e X
0
0 0.1 02 03 0.4
Probability of stale entries in local cache
(2)
0.4 :
Isolated query
Recursive query -------
Probability of peers being online p_on = 0.8
Number of replicas r = 4
Depth of P-Grid d = 7
03
z /
3
3
8
g 02
o
3
T
&
0.1
e
e
e U
0 0.1 02 03 0.4 05
Probability of stale entries in local cache

Fig. 5. Probability of failure with variation of
Don and Ddyn

Figure 6(a) shows the the increased effort by
a factor in terms of the messages in the recur-
sive version of the query (Y-axis) with variation
of pgyn for both the cases of pon, (0.6 and 0.8)
studied here. The expected effort for the isolated-
query in these cases is fixed, and equals 14 mes-
sages (0.5 7 * lga(n)).

Figure 6(b) shows the fraction of presently stale
caches which will be updated as a consequence
of the recursive queries (Y-axis) with variation of
Ddyn, again for both the cases of p,, (0.6 and 0.8).

Figure 6(c) shows u, the overall probability that
any particular peer may not be available (either
because it is offline, or has changed physical ad-
dress) in an isolated attempt to contact it at a
cached physical address.

The results are intuitive. With higher p,,, and
lower pgyn, failure rates are low, and the addi-
tional effort in using recursion is marginal. Self-
healing is not critical, and thus a low fraction

11

100

90 pr jty-of peers b "
Number of replicas r = 4
Depth of P-Grid d =

80

60

50

Additional effort for recursive case

P SO S— S
0 0.1 0.2 03 0.4 05
Probability of stale entries in local cache
(2)
0.1
p_on=0.8
p_on=0.6 -------

0.09

p-on: f peer
Number of replicas r = 4
Depth of P-Grid'd = 7

Fraction of present stale entries in cache that will be rectified
o
=
&

0.04
0.03
0.02
0.01
[
0
0 0.1 0.2 0.3 0.4 05
Probability of stale entries in local cache
0.6
p_on=08 —— ol
p_on=06 -------
0.5
3
2
2
<
2 0.4
S
3
€
g
<)
8 o3
2
<
g
E
[}
i 0.2
5 p_on: Probability of peers being online
= Number of replicas f = 4
& Depth of P-Grid d =7
0.1
0
0 0.1 0.2 03 0.4 05
Probability of stale entries in local cache
()

Fig. 6. Consequences of recursive version of the
algorithm: (a)additional effort; (b)self-healing;
and (c)failure probability for contacting a peer

EPFL Technical Report 1C/2002/67

of stale caches being rectified does not effect the
overall performance. With lower p,, and higher
Ddyn, and thus higher p, effort for recursion in-
creases, but it manages to restrict the failure rate,
unlike the non-recursive version (isolated query),
where the effort is constant, but the failure rate
increases rapidly. Thus even when p is relatively
low, the failure probability of the recursive ver-
sion of the search is significantly lower than the
non-recursive counterpart. For both the cases of
Pon, We observe that even when p is moderately
high (0.5) (payn = 0.167 and 0.375 for p,, = 0.6
and 0.8 respectively) (see Figure 6(c)), the fail-
ure probability of the non-recursive query is as
high as 0.2-0.25, while the recursive version limits
the failure to 0.03 — 0.05 (shown in Figures 5(a)
and 5(b)) with only an additional effort of 2 to 3
times (additional effort is shown in Figure 6(a)).
However, when p is very high (= 0.6 and larger)
(Payn = 0.33 and 0.5 for p,y, = 0.6 and 0.8 respec-
tively), even then the recursive query can restrict
the failure rate, but pays heavily in terms of addi-
tional effort (see Figure 6(a)). The effort rapidly
grows, because of numerous child queries which
potentially form loops. Such an avalanche can
however be easily restricted by the use of time-to-
live for recursion, but that will increase the fail-
ure probability, and has been omitted from the
algorithm and analysis for the sake of simplicity.
Further, with the self-healing induced by recur-
sion, as shown in Figure 6(b), the cache is up-
dated. The self-healing property is also encourag-
ing, since with larger u, the chances of recursions
increase, and so do the chances of rectifying stale
cached physical addresses.

The initial efforts to manage dynamic addresses
of peers with our approach is promising, not only
because the mechanism works with a good suc-
cess rate, but also because it has inherent self-
healing features, which are essential for any self-
organizing system to succeed.

8 Related Work

As already elaborated in Sections 1 and 2 the
problem of dynamic IP addresses as we face it
in P2P systems would not exist if Mobile IP [18]
or IPv6 [7] were in place and available at a large
scale. Since neither technology is in place and it
is unclear when this will happen and how long a
transition from IPv4 to these new protocols will
take, approaches like the one presented in this pa-
per are still required and will stay relevant in prac-
tice for quite some time to handle dynamic IP ad-
dresses in an IPv4 world.

As mentioned earlier in Section 2, Gnutella [6]
can handle dynamic IP addresses easily because

12

peers actively announce their availability (IP ad-
dress) and maintain a number of permanent con-
nections to other peers. However, this comes at
the expense of very high network traffic. For ex-
ample, the number of messages caused by a sin-
gle Gnutella message (ping) to join the Gnutella
network and its replies (pong) for a standard
Gnutella setup (I'TL = 7, 4 connections C
per peer, i.e., each peer forwards incoming mes-
sages to 3 other peers) can be calculated as

2% Yy Cx(C — 1)t = 26240.

Freenet [5] originally proposed address resolu-
tion keys stored inside Freenet itself to cope with
dynamic IP addresses: A mapping between a vir-
tual address which is used in the routing tables
and a real IP address is stored inside Freenet it-
self as so-called signed-subspace keys. However,
no details on the concrete algorithm are available.
Additionally, entries in a signed-subspace can only
be changed by the owner of the subspace which
seems to make it impossible that peers change
their address in a secure way: either the owner can
change the mapping or all peers have the neces-
sary security credentials to do it but then the secu-
rity provision of a signed subspace is futile. Alike,
no analysis on the efficiency of this approach is
available. According to the Freenet website [14]
they suggest to use a dynamic DNS service such
as DynDNS.org.

DynDNS.org [11] is a service that allows a user
to map a dynamic address to a static hostname,
i.e., a user selects a hostname in one of the sup-
ported domains, for example, p-grid.homedns.org,
and enters the current IP address via a web in-
terface that is protected by a username/password
scheme (this can be automated in a simple
way via a HTTP session done by a program).
DynDNS.org then provides a mapping from p-
grid-homedns.org to the provided IP address on
their DNS server. If the IP address changes the
mapping can be updated. By using the cho-
sen DynDNS hostname in routing tables and for
downloads an up-to-date mapping is available.
Besides DynDNS many similar services exist [22].

In theory even DNS [4] itself could now be used
for maintaining dynamic IP addresses. [25] added
support for dynamically updating a nameserver’s
database to the original design of DNS, e.g., for
allowing a DHCP server to enter up-to-date map-
pings. Access to the database is based on the IP
address of the requester. [24] added transactional
signatures (TSIG) based on symmetric cryptog-
raphy to make updates more secure and [12] fi-
nally introduced a fully-flexed infrastructure for
secure DNS updates based on public-key cryptog-
raphy. However, all these schemes require elab-
orate configurations, and are intended for com-
munication among a number of dedicated servers,

EPFL Technical Report 1C/2002/67

not for allowing the average user to change the
DNS database (every peer would have to be
granted access which would not scale at all). To
get around these problems [16] describes an ap-
proach to make DNS self-configuring and self-
administering. However, security is not addressed
at all and unique identity of peers would have to
be ensured by management processes outside the
proposed system, i.e., consistent and secure as-
signment of up-to-date IP addresses to names and
prevention of name reuse to ensure unique identity
mappings are not addressed. It may even occur
that hosts are renamed (merging of two previously
unconnected networks with name conflicts) which
renders this approach unusable for our purposes.

Other work using a DNS-like hierarchy has also
been done in the context of decentralized identifi-
cation, such that some peers authorize other peers
to use particular resources they provide. Any peer
can authorize other peers to use its local resources
as well as possibly delegate the authority to autho-
rize other peers to do so. Unlike DNS, there is no
single root in this hierarchy-based authentication
and authorization scheme. Systems following this
approach are [8] and [3] which are based on [23].

In order to handle dynamic physical addresses
securely we introduced a self-organizing public key
infrastructure. PGP [15] is comparable to our
concepts because it offers a similar, decentralized
approach. PGP exploits the small world phe-
nomenon of social acquaintance to create a web of
trust on peer’s public key. Consequently, it oblit-
erate the need of central authorities for a pub-
lic key infrastructure, and has been an enormous
success as a civilian purpose decentralized public
key infrastructure. PGP uses transitivity of trust,
whereby, if P4 trusts that Kp is Pg’s public key,
and also relies (personally determined) on Pg to
certify a third party’s public key, then P4 will use
K¢ as Pg’s public key, if Pp certifies the same.
The strength of a chain is determined by the weak-
est link, and hence a simple transitive trust is
highly vulnerable. An extension of the approach
has been to include multiple paths [19] in an ef-
fort to bolster authentication, but reliability of
such approaches is limited because of intersecting
paths among other reasons, and thus needs apart
from the resource consuming effort to find mul-
tiple paths, authentication metrics [20] to quan-
tify the reliability of such multiple paths. Thus
it is heavy on both network resources as well as
computational resources. Further, both the mul-
tiple paths and the metrics need to be evaluated
at each peer, and thus the effort is not shared.
Our use of P-Grid virtual infrastructure to cre-
ate a distributed public key infrastructure how-
ever is bereft of these drawbacks, since discovery
of keys is done using efficient searches, and proba-

13

bilistic guarantee (PGP and variants can also pro-
vide only probabilistic guarantee) can be obtained
through replication, and using quorums to miti-
gate malicious behaviour. Thus the effort of stor-
ing as well as searching is distributed, and is not
heavy either computationally or on network re-
sources. Since a subset of peers (to which searches
are efficiently routed) are responsible for a given
key, it is also easy to either revoke or update pub-
lic key using lazy update algorithms [9]. Thus,
though we have used our approach for handling
dynamic address of participants in a P2P system,
the underlying public-key infrastructure we have
proposed in itself merits further study, possibly in
conjunction with a hybrid approach of PGP, and
defines a direction of our future work.

9 Conclusions

This paper described a decentralized, self-
maintaining, light-weight, and secure name ser-
vice. We have demonstrated that our algorithm is
robust and applicable in unreliable environments
such as current peer-to-peer systems and operates
well even if we assume low online probabilities.
The service is based on the P-Grid P2P system
and applied in P-Grid itself to remedy the problem
of dynamic IP addresses of peers. However, it can
be used for other applications that require con-
stant server access despite changing IP addresses
of the servers as well. Also the approach can easily
be generalized to support other kinds of name ser-
vices because we do not constrain the type of map-
pings stored. The service offers a sufficient level
of security—deliberately balancing costs against
application requirements—by combining a PGP-
like approach for circulating public keys with a
quorum-based query scheme that provides robust-
ness against cheating peers. It is self-maintaining
since it requires only little manual configuration
and then operates without requiring further main-
tenance. To demonstrate the efficiency and appli-
cability of our approach we have provided an an-
alytical model and have evaluated our algorithm
against this model. The analytical model is a sig-
nificant contribution in contrast to most of the
literature in this area which relies on empirical
measurements only.

References

[1] K. Aberer. Scalable Data Access in P2P Sys-
tems Using Unbalanced Search Trees. In Pro-
ceedings of WDAS-2002, 2002.

[2] K. Aberer, M. Hauswirth, M. Punceva, and
R. Schmidt. Improving Data Access in P2P

[5]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

EPFL Technical Report 1C/2002/67

Systems. IEEE Internet Computing, 6(1),
2002.

S. Ajmani, D. E. Clarke, C.-H. Moh, and
S. Richman. ConChord: Cooperative SDSI
Certificate Storage and Name Resolution. In
Electronic Proceedings of IPTPS 02, 2002.

P. Albitz and C. Liu. DNS and BIND.
O’Reilly & Associates, 2001.

I. Clarke, O. Sandberg, B. Wiley, and T. W.
Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system. In
Designing Privacy Enhancing Technologies:
International Workshop on Design Issues

in Anonymity and Unobservability, number
2009 in LNCS, 2001.

Clip2. The Gnutella Protocol Specification
v0.4 (Doc. Rev. 1.2), 2001. http://www.
clip2.com/GnutellaProtocol04.pdf.

P. H. Salus (Compiler). Big Book of IPv6
Addressing RFCs (Big Book). Morgan Kauf-
mann, 2000.

R. Cox, A. Muthitacharoen, and R. Morris.
Serving DNS using a Peer-to-Peer Lookup
Service. In Proceedings of IPTPS ’02, num-
ber 2429 in LNCS. Springer, 2002.

A. Datta, M. Hauswirth, and K. Aberer. Up-
dates in Highly Unreliable, Replicated Peer-
to-Peer Systems. In To appear in the Pro-
ceedings of ICDCS 2003, 2003.

R. Droms. Dynamic Host Configuration Pro-
tocol. RFC2131. Network Working Group,
IETF, 1997.

LLC Dynamic DNS Network Services. Dyn-
DNS website, 2003. http://www.dyndns.

org/.

D. Eastlake. Domain Name System Secu-
rity Extensions. RFC2535. Network Working
Group, IETF, 1999.

K. Egevang and P. Francis. The IP Network
Address Translator (NAT). RFC1631. Net-
work Working Group, IETF, 1994.

Freenet. Windows Snapshot, Sep. 2002.
http://www.freenetproject.org/wiki/index.
php?WindowsSnapshot.

S. Garfinkel. PGP: Pretty Good Privacy.
O’Reilly & Associates, 1994.

P. Huck, M. Butler, A. Gupta, and M. Feng.
A Self-Configuring and Self-Administering
Name System with Dynamic Address Assign-
ment. ACM TOIT, 2(1), 2002.

14

[17]

[20]

[21]

[22]

[23]

[25]

R. Motwani and P. Raghavan. Random-
ized Algorithms, chapter 3.6, “The Coupon
Collector’s Problem”. Cambridge University
Press, 1995.

C. E. Perkins, B. Woolf, and S. R. Alpert.
Mobile IP Design Principles and Practices.
Prentice Hall PTR, 1998.

M. K. Reiter and S. G. Stubblebine. Re-
silient authentication using path indepen-
dence. IEEE Transactions on Computers,
47(12), 1998.

M. K. Reiter and S. G. Stubblebine. Authen-
tication metric analysis and design. ACM
Transactions on Information and System Se-
curity, 2(2), 1999.

B. Schneier. Applied Cryptography, chapter
21, “Identification Schemes”. John Wiley &
Sons, 1996.

D. E. Smith. Dynamic DNS, May 2002. http:
//www.technopagan.org/dynamic/.

I. Stoica, R. Morris, D. Karger, F. Kaashoek,
and H. Balakrishnan. Chord: A Scalable
Peer-To-Peer Lookup Service for Internet
Applications. In Proceedings of the 2001
ACM SIGCOMM Conference, 2001.

P. Vixie, O. Gudmundsson, D. Eastlake 3rd,
and B. Wellington. Secret Key Transaction
Authentication for DNS (TSIG). RFC2846.
Network Working Group, IETF, 2000.

P. Vixie, S. Thomson, Y. Rekhter, and
J. Bound. Dynamic Updates in the Domain
Name System (DNS UPDATE). RFC2136.
Network Working Group, IETF, 1997.

