
Zero-programming Sensor Network Deployment�
Karl Aberery, Manfred Hauswirthz, Ali SalehiyyEcole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandzDigital Enterprise Research Institute (DERI), National University of Ireland, Galway

Abstract

The availability of cheap and smart wireless sensing de-
vices provides unprecedented possibilities to monitor the
physical world. On the technical side these devices intro-
duce several original research problems, many of them re-
lated to the integration of the rampant technology propos-
als. Global Sensor Networks (GSN) is a platform which
provides a scalable infrastructure for integrating heteroge-
neous sensor network technologies using a small set of pow-
erful abstractions. GSN supports the integration and discov-
ery of sensor networks and sensor data, provides distributed
querying, filtering, and combination of sensor data, and of-
fers dynamic adaption of the system configuration during
operation through a declarative XML-based language, and
enables zero-programming deployment and management.

1. Towards a Sensor Internet

In 1999,Business Weeknamed networked micro-sensor
technology as one of the 21 most important technologies
of the 21st century. To date, the research in the sensor
network community has mainly focused on routing proto-
cols and information collection and aggregation in a single
sensor network with multiple different sensors connected
through wireless links. As the prices of sensors decrease
rapidly, there will soon exist huge numbers of sensor net-
works in different places, managed by different organiza-
tions. To fully exploit the potential of this “Sensor Internet,”
platforms enabling the fast and easy deployment, integration
and management of the sensor sites and the produced data
streams will be required. At the moment these issues are
mostly addressed in an ad-hoc fashion.

Given the current growth rate, we may soon expect to
arrive at a situation comparable to the publication of docu-
ments on the Web whose success is mainly based on sharing
a few simple logical abstractions (URL, hyperlink, HTML)
and basic communication protocols (HTTP, more recently
Web Services) that provide universal access and linking�The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Informationand Com-
munication Systems (NCCR-MICS), a center supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322 and by the Lı́on
project supported by Science Foundation Ireland.

among autonomously published data sources. The Global
Sensor Networks (GSN) platform takes up these successful
ideas and aims at making publication and access to sensor
networks and sensor data as simple, powerful, and flexible
as accessing Web documents. The design of GSN follows
four basic goals:

Simplicity: The system is based on a minimal set of
powerful abstractions which can be easily configured and
adopted to the user’s needs. Sensor networks and data
streams are defined in a declarative way using SQL as data
manipulation language. XML is used as the syntactic frame-
work for system configuration.

Adaptivity: Adding new types of sensor networks and
dynamic (re-)configuration of data sources is supported dur-
ing run-time without having to interrupt ongoing system op-
eration. To that end we use a container-based implementa-
tion facilitating dynamic reconfiguration.

Scalability: By targeting a very large number of data
producers and consumers with a variety of application re-
quirements, GSN has to consider scalability issues specif-
ically for distributed query processing and distributed dis-
covery of sensor networks. To meet this requirement, the
design of GSN is based on a peer-to-peer architecture.

Light-weight implementation: GSN can be deployed in
standard computing environments without excessive hard-
ware or bandwidth requirements. It is portable, requires
minimal configuration, and is easy to install and use.

In this paper we provide a brief overview of GSN. We
sketch a simple usage scenarios in Section 2, provide an
overview of the underlying conceptual model in Section 3,
discuss basic abstractions in Section 4, introduce GSN’s ar-
chitecture in Section 5, and present related work in Sec-
tion 6 before concluding. A detailed description of GSN
is provided in [1] and the implementation is available from
http://globalsn.sourceforge.net/.

2. A Simple Application Example

To illustrate the potential applications and flexibility of
GSN we provide a simple application scenario in a (univer-
sity) building as shown in Figure 1. We assume the follow-
ing, fairly typical hardware setup: wireless cameras with
built-in HTTP access; wireless sensors (motes) equipped



with light, sound, temperature, pressure, etc. sensors (weas-
sume that all motes of the same type form a sensor network);
RFID tags which are attached to the key rings of people, and
to books, mobile phones and laptops in the buildings; and
several RFID readers whose coverage ranges are shown in
yellow (gray) in Figure 1.

WAN

Wireless Camera

Sensor network, sensing light,sound
tempreature, pressure, accleration, etc.

RFID Tags

RFID reader

120
121

126 127

128

129

131

130

124

132

123

122

125

Figure 1. A simple scenario

Further we assume that: each computer runs a GSN in-
stance; the webcams are accessed directly via HTTP for
which some GSN instance holds the corresponding virtual
sensor definitions; and the other sensors (motes) or a com-
plete sensor network can either be accessed via the local
area network or they are physically connected to one of the
computers close to them.

In this setup GSN allows the user to accomplish a large
variety of tasks. For example, the library manager can reg-
ister a query to be notified when there are more than 15
books (equipped with RFIDs) in one room in addition to
the monthly report on the most popular books of the month
(e.g., to buy more of them). Individual users can post one-
shot queries to the library (room 123) to get the status of cer-
tain books or, in case a book of interest is currently not avail-
able, can register a continuous query to be notified when the
book is returned to the library. Or, a person in room 128 may
be interested to receive a stream of camera images whenever
a movement in the house is detected or a sound sensor ob-
serves some noise above a certain threshold. If someone
loses a mobile phone (with an RFID tag attached to its bat-
tery slot), one can check for its last location in the build-
ing simply by posting a query on the previous observations
provided by all sensor networks deployed in the building or
register a continuous query to be notified (e.g., via email)
whenever the mobile phone’s RFID tag is detected.

3. Global Sensor Network Model
The current view on wireless sensor networks is based

on a physical view: Single sensors or whole sensor net-
works are connected via wireless connections to an access
point. Ad-hoc routing protocols route data to selected sen-
sors (sinks) that communicate with an access point which is
connected to the Internet and which can process and make
available the data received from the sensors. Applications
wanting to use sensor data need to first identify the access
points, possibly through multiple layers, and then follow the
specific access protocols defined.

A major problem of this model is the dependency of the
access to sensor data on the specific implementation. Since

sensors can be considered as data sources GSN adopts the
principle ofdata independenceas a fundamental idea. This
abstraction is well-accepted and has proven extremely suc-
cessful in the design of database systems. It allows the users
of GSN to abstract from the highly heterogeneous physical
infrastructures of current sensor network platforms, justas
in a database system where the user abstracts from the spe-
cific implementation of physical data storage and access.

GSN provides alogical viewon sensor networks based
on thevirtual sensorabstraction. Virtual sensors abstract
from the implementation details to access sensor data and
model sensor data as temporal streams of relational data.
Virtual sensors can also represent derived views on sensor
data streams, resulting from post-processing and combina-
tion of sensor data from different sources. This is shown
informally by the conceptual data flow in Figure 2 which
illustrates how data streams from different sensors and sen-
sor networks can be integrated. Virtual sensors are bound
to physical nodes in the network by deploying them toGSN
containersthat host virtual sensors. This approach supports
our goal of simplicity, as by one single abstraction users
can work with sensor data from heterogeneous sensor data
sources and any data derived from raw sensor data.

TimestampStream data element Stream data element Timestamp

Stream Source Query1

Output Relation

Stream Source Query2

Output Relation

from stream source
Stream elements coming

from stream source
Stream elements coming

Input Stream Query

Set of stream elements

Virtual Sensor’s Main Java Class

... ...

Persistent storage

Figure 2. Conceptual data flow in a GSN node

4. Virtual Sensors and Data Stream Processing
A virtual sensor can have any number of input streams

and produces one output stream. The specification of a
virtual sensor provides all necessary information required
for deploying and using it, including (1) metadata used for
identification and discovery, (2) the structure of the data
streams which the virtual sensor consumes and produces (3)
an SQL-based specification of the stream processing per-
formed in a virtual sensor, and (4) functional properties re-
lated to persistency, error handling, life-cycle, management,
and physical deployment

To support rapid deployment, these properties of virtual
sensors are provided in a declarative deployment descrip-
tor. Figure 3 shows a fragment of a virtual sensor defini-
tion which defines a sensor returning an averaged tempera-
ture from a remote virtual sensor (wrapper="remote")



which is accessed via the Internet through another GSN in-
stance (GSN instances cooperate in a peer-to-peer fashion).�

�

�

�
...

<life-cycle pool-size="10" />
<output-structure>

<field name="TEMPERATURE" type="integer"/>
</output-structure>
<storage permanent-storage="true" size="10s" />
<input-stream name="dummy" rate="100" >

<stream-source alias="src1" sampling-rate="1"
storage-size="1h">

<address wrapper="remote">
<predicate key="type" val="temperature" />
<predicate key="location" val="bc143" />

</address>
<query>select avg(temperature)

from WRAPPER</query>
</stream-source>

<query>select * from src1</query>
</input-stream>
...

Figure 3. Virtual sensor definition (fragment)

To specify the processing of the input streams we use
SQL queries which refer to the input streams by the reserved
keywordWRAPPER. The<input-stream> element pro-
vides all definitions required for identifying and processing
an input stream of the virtual sensor. The<life-cycle>
element defines deployment aspects such as the number
of threads available for processing, the<storage> ele-
ment controls how stream data is stored persistently (among
other attributes this controls the temporal processing), and
<output-structure> defines the structure of the pro-
duced output stream.

In GSN a data stream is a sequence of timestamped tu-
ples. The order of the data stream is derived from the order-
ing of the timestamps and the GSN container provides basic
support to manage and manipulate the timestamps. These
services essentially consist of the following components:(1)
a local clock at each GSN container, (2) implicit manage-
ment of a timestamp attribute, (3) implicit timestamping of
tuples upon arrival at the GSN container (reception time),
and (4) a windowing mechanism which allows the user to
define count- or time-based windows on data streams. Mul-
tiple time attributes can be associated with data streams and
can be manipulated through SQL queries. The production
of a new output stream element of a virtual sensor is always
triggered by the arrival of a data stream element from one
of its input streams. GSN’s query processing approach is
related to TelegraphCQ as it separates the time-related con-
structs from the actual query. Temporal specifications, e.g.,
the window size, are provided in XML in the virtual sensor
specification, while data processing is specified in SQL with
the full range of operations allowed by the standard syntax.

Detailed descriptions of virtual sensors and GSN’s data
stream processing are provided in [1].

5. System Architecture and Implementation
Similar to application servers, GSN provides an environ-

ment in which sensor network services can be specified and

deployed in a simple and flexible manner by hiding most
of the system complexity. GSN follows a container-based
architecture and each container can host and manage any
number of virtual sensors. The container manages every as-
pect of the virtual sensors at runtime including remote ac-
cess, interaction with the sensor network, security, persis-
tence, data filtering, concurrency, and access to and pool-
ing of resources which enables on-demand use and com-
bination. Virtual sensor descriptions hold user-definable
key-value pairs which are published in a peer-to-peer di-
rectory so that virtual sensors can be discovered and ac-
cessed based on any combination of their properties which
provides a simple model for identification and discovery of
virtual sensors through metadata. GSN nodes communicate
among each other in a peer-to-peer fashion. By viewing
GSN containers as cooperating peers in a decentralized sys-
tem, we tried avoid some of the intrinsic scalability prob-
lems of many other systems which rely on a centralized or
hierarchical architecture. Targeting a “Sensor Internet”as
the long-term goal, we also take into account that such a
system will consist of “Autonomous Sensor Systems” with
a large degree of freedom and only limited possibilities of
control, similarly as in the existing Internet. Figure 4 de-
picts the internal architecture of a GSN node.

Query Processor

Notification Manager

Query Repository

Manager

Life Cycle

Storage

Integrity service

GSN/Web/Web−Services Interfaces

Pool of Virtual Sensors

Stream Quality Manager

Q
ue

ry
 M

an
ag

er

Virtual Sensor Manager

Input Stream Manager

Access control

Figure 4. GSN container architecture

The virtual sensor manager (VSM) is responsible for pro-
viding access to the virtual sensors, managing the deliv-
ery of sensor data, and providing the necessary administra-
tive infrastructure. Its life-cycle manager (LCM) subcom-
ponent provides and manages the resources provided to a
virtual sensor and manages the interactions with a virtual
sensor (sensor readings, etc.) while the input stream man-
ager (ISM) manages the input streams and ensures stream
quality (disconnections, unexpected delays, missing values,
etc.). The data from/to the VSM passes through the storage
layer which is in charge of providing and managing persis-
tent storage for data streams. Query processing is done by
the query manager (QM) which includes the query proces-
sor being in charge of SQL parsing, query planning, and ex-
ecution of queries (using an adaptive query execution plan).



The query repository manages all registered queries (sub-
scriptions) and defines and maintains the set of currently ac-
tive queries for the query processor. The notification man-
ager deals with the delivery of events and query results to
the registered clients. The notification manager has an ex-
tensible architecture which allows the user to customize it
to any required notification channel (email, SMS, triggering
actuators such as an epuck robot, etc.). The top three layers
deal with access mechanisms (Web browser interface, web
services, etc.), (fine-grained) access control, and integrity
and security (electronic signatures, encryption, etc.).

GSN is implemented in Java (approx. 30,000 LOC at the
moment). For each type of sensor a wrapper is required.
Currently wrappers for all major TinyOS platforms (Mica2,
Mica2Dot, etc.) are implemented as well as for wired and
wireless (HTTP-based) cameras (e.g., AXIS 206W), sev-
eral RFID readers (TI, Alien Technology), Bluetooth de-
vices, Shockfish, WiseNodes, epuck robots, etc. For de-
ploying a virtual sensor the user has to specify an XML
deployment descriptor, i.e., a virtual sensor which can be
added to / removed from a running GSN system at any time
without interrupting the system’s operation. Additionally,
GSN supports plug-and-play detection and deployment of
sensors based on the IEEE 1451 standard as GSN uses the
standardized Transducer Electronic Data Sheet (TEDS) self-
description feature for dynamic generation of virtual sen-
sor descriptions. By using re-usable wrappers abstracting
from the physical access details along with declarative vir-
tual sensor descriptions and the IEEE 1451 based plug-and-
play feature, GSN provides truly zero-programmingdeploy-
ment and management support (including sensor mobility).

6. Related Work
So far only few architectures to support interconnected

sensor networks exist. Probably the closest approach to
GSN is the work by Sgroi et.al. [4] who suggest basic ab-
stractions, a standard set of services, and an API to free ap-
plication developers from the details of the underlying sen-
sor networks. However, the focus is on systematic definition
and classification of abstractions and services, while GSN
takes a more general view and provides not only APIs but
a complete query processing and management infrastruc-
ture with a declarative language interface. Hourglass [5]
provides an infrastructure for connecting sensor networks
to applications and offers topic-based discovery and data-
processing services. Similar to GSN it tries to hide internals
of sensors from the user but focuses on maintaining quality
of service of data streams in the presence of disconnections
while GSN is more targeted at flexible configurations, gen-
eral abstractions and distributed query support. HiFi [2] pro-
vides efficient, hierarchical data stream query processingto
acquire, filter, and aggregate data from multiple devices in
a static environment (with homogeneous sensor networks)
while GSN takes a peer-to-peer perspective assuming a dy-
namic environment with heterogeneous sensor networks and

allowing any node to be a data source, data sink, or data
aggregator. IrisNet [3] proposes a two-tier architecture con-
sisting of sensing agents (SA) which collect and pre-process
sensor data and organizing agents (OA) which store sen-
sor data in a hierarchical, distributed XML database. This
database is modeled after the design of the Internet DNS
and supports XPath queries. In contrast to that, GSN fol-
lows a symmetric peer-to-peer approach and supports pub-
lish/subscribe besides active queries. Besides these architec-
tures, a large number of complimentary work on query pro-
cessing in sensor networks exist, Aurora, STREAM, Tele-
graphCQ, and Cougar being the most prominent ones.

7. Conclusions
To enable the vision of a “Sensor Internet” we suggest to

adopt the concepts of successful, global information tech-
nologies such as the Web, whose success is based on shar-
ing a few simple logical abstractions and basic communi-
cation protocols that provide universal access and linking
among autonomously published data sources. GSN follows
this model by making publication of sensor data and access
to sensor networks and sensor data as simple, powerful, and
flexible as accessing Web documents. GSN hides arbitrary
data sources behind its virtual sensor abstraction and pro-
vides simple and uniform access to the host of heteroge-
neous technologies available through powerful declarative
specification and query tools. A detailed description of GSN
is provided in [1] and the implementation is available from
http://globalsn.sourceforge.net/.

References
[1] K. Aberer, M. Hauswirth, and A. Salehi. The Global

Sensor Networks middleware for efficient and flex-
ible deployment and interconnection of sensor net-
works. Technical Report LSIR-REPORT-2006-006,
EPFL, 2006.

[2] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss,
S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and
W. Hong. Design Considerations for High Fan-in Sys-
tems: The HiFi Approach. InCIDR, 2005.

[3] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan.
IrisNet: An Architecture for a World-Wide Sensor Web.
IEEE Pervasive Computing, 2(4), 2003.

[4] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and
J. M. Rabaey. A service-based universal application
interface for ad hoc wireless sensor and actuator net-
works. InAmbient Intelligence. Springer Verlag, 2005.

[5] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An Infrastruc-
ture for Connecting Sensor Networks and Applications.
Technical Report TR-21-04, Harvard University, Elec-
trical Engineering and Computer Science, 2004.


