
Range queries in trie-structured overlays �

Anwitaman Datta, Manfred Hauswirth, Renault John, Roman Schmidt, Karl Aberer
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Abstract

Among the open problems in P2P systems, support
for non-trivial search predicates, standardized query lan-
guages, distributed query processing, query load balancing,
and quality of query results have been identified as some of
the most relevant issues. This paper describes how range
queries as an important non-trivial search predicate can
be supported in a structured overlay network that provides�������	��

�

search complexity on top of a trie abstraction. We
provide analytical results that show that the proposed ap-
proach is efficient, supports arbitrary granularity of ranges,
and demonstrate that its algorithmic complexity in terms of
messages is independent of the size of the queried ranges
and only depends on the size of the result set. In contrast to
other systems which provide evaluation results only through
simulations, we validate the theoretical analysis of the al-
gorithms with large-scale experiments on the PlanetLab in-
frastructure using a fully-fledged implementation of our ap-
proach.

1. Introduction

Some of the key open research questions for P2P sys-
tems [11, 14] include:� Support for non-trivial search predicates like range

queries, operators other than equality, and structured
queries.� Query languages, including definition and expressive-
ness.� Distributed query processing.� Quality of query results: Comprehensiveness, existen-
tial quantification, and QoS of results.

�
The work presented in this paper was supported (in part) by the Na-

tional Competence Center in Research on Mobile Information and Com-
munication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322 and was
(partly) carried out in the framework of the EPFL Center for Global Com-
puting and supported by the Swiss National Funding Agency OFES as part
of the European project Evergrow No 001935.

This paper describes how range queries as an important
non-trivial search predicate can be supported in a struc-
tured overlay network, implementing DHT functionality
with

�������	��

�
search complexity on top of a physically

hierarchy-less overlay abstracted as a logical trie.
Tries are a standard indexing structure from databases to

support non-trivial search predicates: “Tries are a general-
ization of trees. A trie is a tree for storing strings in which
there is one node for every common prefix. The strings are
stored in extra leaf nodes.” (Definition by the National
Institute of Standards and Technologies). A key benefit
of tries is that they cluster semantically close data items
which is a critical pre-condition for efficient processing of
range queries. If semantically close data items are stored
in a highly fragmented manner, as in standard DHT ap-
proaches, then their logical proximity is not utilized which
significantly impairs the complexity and efficiency of such
queries. Traditional DHTs such as Chord or Pastry use
uniform hashing functions to map application keys to their
identifier space. While this achieves good storage load bal-
ancing and efficient discovery of exact keys, it is in conflict
with preserving the semantic proximity as it destroys ex-
isting relations among the application-specific keys. Keys
which are semantically close at the application level are
heavily fragmented in a DHT. Thus in such DHTs an ad-
ditional level of indexing is required to locate semantically
close data, like in the simple case of range queries (not to
mention more complex predicates). While there are several
proposals to do this in existing DHTs, the most generic and
usable proposal so far has been to superimpose a trie (prefix
hash tree [18]) onto a DHT. However, this approach is inef-
ficient for exactly the reasons given above as semantically
close data items are not necessarily stored close to each
other in the DHT (high fragmentation), and hence, multi-
ple overlay network queries are required to locate all the
content.

In contrast to this family of approaches, we make the
overlay network itself the trie, i.e., using “in-network index-
ing,” instead of superimposing a trie onto an existing DHT.
Thus we make the overlay network as efficient as possible
for range queries and other higher-level predicates while

still offering
�������	��

�

complexity for exact searches. Es-
sentially, this could be done for any DHT, by using an order-
preserving hash function, i.e., ���	�������������������! #" � �$� � �" � ��� � , instead of uniform hashing. However, as the order
relation of keys is preserved, the trie’s shape adapts to the
distribution of the keys and this can create a highly skewed
key space partitioning. Most DHT proposals are efficient
only when the key space partitions are fairly uniformly dis-
tributed, which, however, would be in conflict with storage
load-balancing for skewed key distributions, as it is the case
when key ordering is preserved. The trie-based P-Grid sys-
tem [1, 4] (http://www.p-grid.org/) accounts for such prob-
lems at the core already.

Range queries over different attributes is a related topic.
Multi-dimensional range queries require indexing of more
dimensions, e.g., as done in Mercury [9], and we do not ex-
plicitly address this issue in this paper. However, we do en-
visage that different applications may indeed need indices
for different (possibly newly derived) attributes, and thus
fast construction of a corresponding index may be neces-
sary [5]. So to say, just like Mercury, multiple tries to sup-
port range queries over different dimensions may also be
supported using multiple P-Grids.

P-Grid uses randomized routing and provides efficient
search (logarithmic in terms of key space partitions) irre-
spective of the tree shape [2, 3]. The trade-off is that more
sophisticated emergent mechanisms are required for the fast
construction of the trie-structured overlay network in a load-
balanced manner [5]. However, the advantages of this ap-
proach include the efficiency and the benefits of tries such as
simplified support and implementation of non-trivial search
predicates. An additional advantage over most other struc-
tured overlay networks, which can be viewed as intercon-
nection networks trying to primarily optimize communica-
tion costs, is that by taking a more database-oriented per-
spective, a wealth of well-researched and highly optimized
algorithms from databases can be adapted and used to im-
plement data management functionalities on top of P-Grid.

In this paper we show how a trie-structured overlay net-
work can be used to efficiently implement range queries.
We start with a brief overview of the principles of the ba-
sic system, elaborating properties we rely on for the effi-
ciency of range queries, for example, logarithmic search
complexity even for skewed distributions. We then describe
the range query algorithms that can be integrated on top of
the overlay network and provide analytical results that show
that the approach supports arbitrary range granularity and is
efficient. We show that the communication cost for execut-
ing a range query is independent of the size of the queried
range and only depends on the size of the result set. We
validate the theoretical results obtained from the analysis of
our range-query algorithms with a number of experiments
implemented in our Java-based implementation of the ba-

sic P-Grid system. The experiments were conducted on the
PlanetLab infrastructure showing the practical applicability
and efficiency of our approach under real-world networking
conditions which incur network churn and high peer load.
In contrast to other approaches on range queries, which are
primarily validated via simulation, we thus do not have to
take any (possibly idealistic or wrong) assumptions on the
environment when performing the experiments, but can pro-
vide “hard results” from tests based on an implementation
that has to account for the combination of all possible prob-
lems occurring in a real-world setting.

Using PlanetLab as the experimental test-bed has its
caveats, however. We would like to point out that the cur-
rent experimental evaluation is still limited to the moderate
number of available peers, and hence the experiments are
limited particularly with respect to assessing the practical
scalability of our approach. This is precisely where our the-
oretical analysis in Section 3 comes into play as based on
the results of the experiments and the analytical model, we
can at least justify that our approach is likely to scale which
we can immediately verify as soon as larger-scale deploy-
ments can be done. Additionally, the experimental environ-
ment on PlanetLab cannot be controlled. However, Planet-
Lab is the real world and newly developed algorithms do
not only have to look good on paper, backed up by analysis
and simulations, but at the end of the day they have to prove
their efficiency and applicability in a real-world scenario.
Given this, we can conclude that our algorithms actually
seem to be be quite robust even in a real environment with
churn caused by the unpredictable behavior of PlanetLab
nodes. Thus a theoretical analysis, which is absolutely nec-
essary for a first evaluation of any approach, and a practical
experimental validation as presented in this paper, comple-
ment each other to really demonstrate the applicability of
approaches that deal with large-scale distributed systems,
which is typically not possible in an approach solely based
on theory and simulations, since both theoretical and sim-
ulation models are idealized, and can never reflect all the
properties of a true large-scale distributed system deployed
over a network.

2. P-Grid: A trie-structured overlay

We use the P-Grid [1, 4] DHT to evaluate the approach
presented in this paper. We assume that the reader is rel-
atively familiar with the standard DHT approach and thus
we only present P-Grid’s distinguishing properties. As any
DHT approach, P-Grid associates peers with data keys from
a key space, i.e., partitions of the underlying distributed data
structure. Each peer is responsible for some part of the over-
all key space and maintains routing information to forward
queries and requests.

Without constraining general applicability we use binary

keys in the following. This is not a fundamental limita-
tion as a generalization of the P-Grid system to k-ary struc-
tures is natural, and exists [6]. P-Grid peers refer to a
common underlying binary trie structure in order to orga-
nize their routing tables (as opposed to other topologies,
such as rings [24], multi-dimensional spaces [19], or hy-
percubes [23]). In the following we will use the terms trie
and tree conterminously.

In P-Grid each peer %'&)(is associated with a leaf of
the binary tree. Each leaf corresponds to a binary string* &,+ , also called the key-space partition. Thus each peer% is associated with a path * � % � . For search, the peer stores
for each prefix * � %
�.- � of * � % � of length - a set of references/ � %
�.- � to peers 0 with property * � %
�1- �32 * � 04�.- � , where *
is the binary string * with the last bit inverted. This means
that at each level of the tree the peer has references to some
other peers that do not pertain to the peer’s subtree at that
level which enables the implementation of prefix routing for
efficient search. The cost for storing the references and the
associated maintenance cost scale as they are bounded by
the depth of the underlying binary tree.

Each peer stores a set of data items 5 � % � . For 67&5 � % � the binary key 8:9�; � 6 � is calculated using an order-
preserving hash function. 8:9�; � 6 � has * � % � as prefix but
it is not excluded that temporarily also other data items
are stored at a peer, that is, the set 5 � %
� * � % �<� of data
items whose key matches * � % � can be a proper subset of5 � % � . Moreover, for fault-tolerance, query load-balancing
and hot-spot handling, multiple peers are associated with
the same key-space partition (structural replication), and
peers additionally also maintain references = � % � to peers
with the same path, i.e., their replicas, and use epidemic
algorithms to maintain replica consistency. Figure 1 shows
a simple example of a P-Grid tree.

01 : 2
1 : 5

00 : 6
1 : 4

11 : 5
0 : 2 0 : 6

11 : 5 10 : 4
0 : 6

Routing table
(route keys with prefix P to peer X)

00 01 10 10 1100

0

00 01 10 11

1

query(5, 100)

query(4, 100), found!

query(6, 100)

01 : 2
1 : 3

Legend:

Peer X

Data store
(keys have prefix P)

3 4 521

P

6

X

P:X

Figure 1. P-Grid overlay network

P-Grid’s hash function maps application keys to binary
strings. In the reference implementation we assume appli-
cation keys to be strings for simplicity, but in fact any data
type can be used. The hash function is order-reserving, i.e.,
it satisfies the following property for two input strings �	�
and ��� :

� ��> � � 8:9�; � � � � > 8:9�; � � � �

where > means is-prefix-of.
To enable this mapping, we first constructed a balanced

trie from a sample string database consisting of unique, lex-
icographically sorted strings of equal length (sample string
databases can be provided by the user). The database is
recursively bisected into equally-sized partitions until each
partition is smaller than a threshold. The keys P-Grid uses
are then calculated by using the application key to “navi-
gate” character-wise through this trie and appending “0” to
the generated key for each “left-turn” or “1” otherwise.

P-Grid, like any other DHT approach, supports two ba-
sic operations: Retrieve(key) for searching a certain key and
retrieving the associated data item and Insert(key, value) for
storing new data items. Since P-Grid uses a binary tree, Re-
trieve(key) is of complexity

���?�@�A�CB + B � , measured in mes-
sages required for resolving a search request, in a balanced
tree, i.e., all paths associated with peers are of equal length.
Skewed data distributions may imbalance the tree, so that it
may seem that search cost may become non-logarithmic in
the number of messages. However, in [2, 3] it is shown that
due to the randomized choice of routing references from the
complimentary sub-tree, the expected search cost remains
logarithmic (DFEHG ���	�I
), independently of how the P-Grid is
structured. The intuition why this works is that in search op-
erations keys are not resolved bit-wise but in larger blocks
thus the search costs remain logarithmic in terms of mes-
sages. This is important as P-Grid uses order-preserving
hashing to compute keys which may lead to non-uniform
key distributions.

The basic search algorithm is shown in Algorithm 1. % in
the algorithm denotes the peer that currently processes the
request.

Algorithm 1 Search in P-Grid: Retrieve(key, p)
1: if JLK M	NPORQ�S.T then
2: return(U!V�WXK M	NZY Q�S.T[K\U]NP^_Q�S.T);
3: else
4: determine ` such that JLK\Q�S<T	ab`@Nc^ JLK M4ad`@N ;
5: r = randomly selected element from e$K M:ab`@N ;
6: Retrieve(key, r);
7: end if

The algorithm always terminates successfully, if the P-
Grid is complete (ensured by the construction algorithm)
and at least one peer in each partition is reachable (en-
sured through redundant routing table entries and replica-
tion). Due to the definition of / and f�9�gih�ji9�k49 � 8:9�;P�?% � it
will always find the location of a peer at which the search
can continue (use of completeness). With each invocation off�9�gih�ji9�k�9 � 8:9�;l�d% � the length of the common prefix of * � % �
and 8:9�; increases at least by one and therefore the algo-
rithm always terminates. Note that, while the network has
a tree/trie abstraction, the system is hierarchy-less, and all
peers reside at the leaf nodes.

Insert(key, value) is based on P-Grid’s more gen-
eral update functionality [12] which provides probabilis-
tic guarantees for consistency and is efficient even in
highly unreliable, replicated environments, i.e.,

���?�@�A�CB + Bnmh�91%l-�jioXp�gijiq
sr p4otgZq�h � . An insert operation is executed in
two logical phases: First an arbitrary peer responsible for
the key-space to which the key belongs is located (Re-
trieve(key)) and then the found peer notifies its replicas
about the inserted key using a light-weight hybrid push-and-
pull gossiping mechanism.

There are several other DHTs which topologically re-
semble P-Grid and use prefix-based routing variants, for ex-
ample, Pastry [21] and particularly Kademlia [16] whose
XOR distance metric results in the same tree abstraction
and choice of routes from all peers in complementary sub-
trees as in P-Grid. The important distinguishing features
of P-Grid include the emergent nature of the P-Grid net-
work based on randomized algorithms, support for sub-
string queries, the disentanglement of peer identifiers from
the associated key space, and the adaptive, structural repli-
cation (multi-faceted load-balancing of storage and query
load) [5].

There is another motivation for having a trie-structured
overlay network instead of a standard distributed hash ta-
ble: The real advantage of traditionally using a hash table
in main memory is the constant time of lookup, insert, and
delete operations. But to facilitate this, a hash table sac-
rifices the order-relationship of the keys. However, over a
network, where only parts of the hash table are stored at
each location, we need multiple overlay hops anyway. For
most conventional DHTs the number of hops is logarithmic
in the network size. Thus the main advantage of constant-
time access no longer exists in DHTs. This made P-Grid
a natural choice for us to use it as the underlying routing
network to support range queries, since it provides normal
key search for same order of message complexity as a DHT,
but in addition can be naturally extended to support range
queries.

The range query approach which is presented in the fol-
lowing is integrated in our P-Grid implementation which is
available at http://www.p-grid.org/.

3. Range query algorithms and complexity
analysis

As described in the previous sections, P-Grid uses an
order-preserving hash function. Thus the resulting P-Grid
tree in fact is a trie. This may lead to skewed data distribu-
tions despite which P-Grid can still guarantee logarithmic
search complexity. Order-preserving hash functions, how-
ever, enable prefix queries and thus range queries of arbi-
trary granularity can be processed efficiently as well in P-
Grid., i.e.,

�������	�CB + B�muBHv % B�w > * � % �tx4B � , where
w

denotes

the common prefix of the borders of the queried range. We
will discuss two classes of algorithms: the min-max traver-
sal algorithm which is sequential and the shower algorithm
which parallelizes the execution of range queries.

Min-max traversal algorithm: Range queries can be
processed sequentially by starting from a peer holding data
items belonging to one bound of the range and forwarding
the query to a peer responsible for the next partition of the
key space, until a peer responsible for the other bound of
the range is encountered. This strategy is called min-max
traversal. The underlying data structure itself does not al-
ways have the information about peers belonging to the next
neighboring key space partitions. However, such routes can
be established either during the construction of the P-Grid
overlay structure (algorithmically trivial), or at run-time us-
ing the existing routing information at the peers. Figure 2(a)
shows the min-max traversal algorithm graphically.

First peer y initiates the range query by querying P-Grid
for the lower bound of the range which is peer z in this
example. Steps (1) and (2) denote standard P-Grid routing
and in step (3) the result is returned to peer y , i.e., peer z .
Then in step (4) peer y sends the range query request to
peer z and peer z sends its data pertaining to the interval
to peer y (in the implementation steps (3), (4), and (5) are
actually done in one step). Concurrently the range query
is forwarded to peer { using the “next” pointer. Peer {
checks whether it is in the queried range, and if yes, peer {
sends its data pertaining to the interval to peer y , and con-
currently forwards the range query to peer | which repeats
the same operations as peer { except that it does not for-
ward the query to another peer as it has checked that it is a
peer responsible for the other bound of the queried range.

Algorithm 2 shows this algorithm in pseudo code.

Algorithm 2 Sequential range queries: minmax(f , %)
1: if JLK M	NPO~} then
2: return(U!V�WXK M	NZY Q�S.T[K\U]N
VC});
3: determine a peer � such that � is responsible for the next key space

partition;
4: minmax K\}�ab�XN ;
5: end if

For simplifying the analysis we assume that the algo-
rithm starts at the lower bound of the range f (the rout-
ing of the query to the lower bound is not shown here, but
is algorithmically trivial in P-Grid). It is assumed that the
neighbor links are cached at each peer during the construc-
tion of the trie (this is also algorithmically trivial). In the
complexity analysis of this algorithm we can assume stor-
age load-balancing (which is achieved stochastically by the
P-Grid base system) and that on average there exist � data
items per key space partition. Then, if there is a range query
for the range f , such that there are { data items in the given
range, search cost and latency using min-max traversal (as-

(a) Min-max traversal (b) Shower

Figure 2. Range query strategies

suming “next” links have been established during construc-
tion) is

���?�@�A� � B + B �
muB +�� B$���
, where

B +�� B is the number
of partitions over which the whole range is stored in P-Grid
and

B + B is the total number of leaf-nodes in the complete P-
Grid tree (total number of key space partitions). The search
cost and latency using min-max traversal is dependent on
the size of the answer set { for the range query, but inde-
pendent of the size of the range f of the query. This is
because

B + � B has an expected value of {��X� , and in partic-
ular, using Markov’s inequality, (�h:� B + � B�� oX{_�X�'�C� ��
for any positive o thus giving a weak bound on the devia-
tion. We do not consider the trivial case {���� as this
would only affect 1 or 2 peers and concentrate on the more
general case of {���� .

As already mentioned, establishing and maintaining
“next” pointers in P-Grid is algorithmically trivial and most
other DHTs proactively maintain it as well. Without them,
an additional small overhead of

B + � B ���?�@�A� � B + B � would
have to be included. Note that this is an upper bound, as
part of the routing does not have to be repeated for the peers
in the interval.

Shower algorithm: The other variant for processing
range queries is to do them concurrently. Here, the range
query is first forwarded to an arbitrary peer responsible for
any of the key space partitions within the range, and then
the query is forwarded to the other partitions in the interval
using this peer’s routing table. The process is recursive, and
since the query is split in multiple queries which appear to
trickle down to all the key-space partitions in the range, we
call it the shower algorithm. The intuition of the algorithm
is shown graphically in Figure 2(b).

In the course of forwarding, it is possible that the query is
forwarded to a peer responsible for keys outside the range.
However, it is guaranteed that this peer will forward the
range query back to a key-space partition within the range.

Moreover, the P-Grid routing ensures that no key space par-
tition will get duplicates of the range queries.

Algorithm 3 gives the pseudo code for the shower algo-
rithm.

Algorithm 3 Parallel range queries: shower(f , - �����1���i�$� , %)
1: if JLK M	NPO~} then
2: return(U!V�WXK M	NZY Q�S.T[K\U]N
VC});
3: end if
4: determine `�� such that JLK��!�\�LKn}�NiaZ`��nNL^ JcK M:ad`��nN ;
5: determine `@� such that JcK@���]�4K\} N�ai`��	NL^ JLK M4ad`��	N ;
6: `�¡ ¢@£C^_�C�X�4K�`�¤b¥�¦Z¦Z§ £�¨ ad���\�LK\`��bad`��$NdN ;
7: ` ¡�©tª ^����]�4K�`��ba�`��$N ;
8: if ` ¤�¥]¦Z¦Z§ £�¨�« ` ¡ ©tª then
9: for `A^¬`�¡I¢�£ to ` ¡ ©tª do

10: r = randomly selected element from e$K M4ad`@N ;
11: shower(R, l+1, r);
12: end for
13: end if

The search cost (in terms of messages) of this vari-
ant is lower bounded by

����­l�®m¯B + � B �°�
. Since ev-

ery message created in the range sub-space reaches a dif-
ferent leaf node (since the sub-spaces are exclusive), and
there are expected {��X� such sub-spaces, the upper bound
is
����­P��m�± j
��d²A���.B +!� B � � ²	³

�d´X�?µ	¶l· �
where {R91%Lg<" is the

maximum path length of any partition in the range. Thus
the complexity of the shower algorithm is again dependent
only on the size of the answer set { for the range query, but
independent of the size of the range f of the query.

The upper bound for latency is
����­P��m���� {R91%Lg<" �3­l� . In

particular, unlike in the sequential variant, the latency of the
parallelized shower algorithm is independent of the number
of data items in the range f , but depends on the distribu-
tion of the data items (which determines the {R91%cg<"). Note
that the issuer of the query will start getting responses for
part of the range with a minimum latency of

���?­l�
, since it

will already encounter some peer responsible for part of the

range.
The expected value of

­
is DFEHG �@�A�¸��
 �)�[{ � . The intu-

ition for the value of
­

is that, if we increase the average
memory of each logical partition to { instead of � , there
will be

�
³�¹iº key space partitions in total, otherwise re-

taining the routing network’s properties, and since first the
query needs to reach any arbitrary peer within the range, this
translates into reaching this virtual partition of average size{ , and hence

­
is the expected search cost in this new net-

work, which has the same topological properties, but fewer
(

 �)�[{) partitions.

4. Experiments

The two range query algorithms were implemented on
top of the Java-based P-Grid implementation (available
from http://www.p-grid.org/) and we performed a number
of large-scale experiments on PlanetLab [10] to validate the
analytical results presented in Section 3 in a practical set-
ting.

4.1. Experimental setup

In the experiments we used a network of 250 peers each
running on a dedicated physical PlanetLab node. We in-
serted 2500 unique data items into the system and required
an average replication factor of 5 which is necessary in
any overlay network to compensate for node and commu-
nication failures. Thus initially we would have a total ofG � ² G	D	D 2»��² G[DAD data items in the system and each peer
would be responsible for G �.¼.½1½�1¼<½ 2 G[D data items. The real
number of the data items in the system in fact was higher as
for load-balancing each peer was required to manage a min-
imum of G	D and a maximum of

� D	D data items, and given
the randomized construction approach of P-Grid, each peer
would thus hold on average ¾	G data items, i.e., the total
number of data items in the system was

² G[D � ¾[G 2¿��À ¾	G[D .
To show that the algorithms basically work for any data

distribution, we used two different data sets, one uniformly
distributed and one Pareto distributed (with a probability
density function of Á�ÂXÃ·$Ä?Å

Ã and parameters 8 2Æ�
and p 2'² E D)

as shown in Figure 3.
Pareto is a typical long-tail distribution which occurs fre-

quently. We will see in the experiments that P-Grid is insen-
sible to such distributions due to the efficiency of the under-
lying load-balancing algorithm which balances both storage
and replication load. We can thus safely infer that if the re-
sults are good for a Pareto distribution, the system will per-
form equally well for other frequent long-tail distributions,
e.g., Zipf.

In the experiments each peer selected randomly 10 data
items of a data global set according to one of these distribu-
tions. The peers then constructed a P-Grid which had an av-

0 0.5 1 1.5 2 2.5
x 104

0

50

100

150

200

250

300

data item index

oc
cu

re
nc

e

Uniform data distribution

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

data item index

oc
cu

re
nc

e

Pareto data distribution

Figure 3. Data set distributions

erage height of
���	� � �1¼<½1½�i½XÇ.¼ 2 G:E È . Then range queries which

affected data from all partitions of the data sets were issued.
The queries were started from randomly chosen peers with
random lower range bounds, and were constructed in a way,
such that they would return 50, 100, 150, 200, 400, and 800
data items. For each of the six answer set sizes, each of
the two distributions, and each of the two algorithms, one
query was issued by each of the 250 peers, i.e., a total ofÈ � ² � ² � ² G	D 2 ÈAD	D	D queries resulting in 250 values per
data point in Figures 4–7.

4.2. Experimental results

There are several performance metrics of interest to eval-
uate the system as well as the algorithms for their suitability
to support range queries. This includes load-balance char-
acteristics (storage, replication, and query load), data frag-
mentation, as well as message costs and latency for vari-
ous data distributions. Previous studies [5] have shown P-
Grid’s efficient multi-faceted load-balancing characteristics
and that the use of order-preserving hashing ensures low
data fragmentation, while the dynamic construction of the
trie structures ensures storage-load balancing. We could
also verify this in our experiments.

Thus the main objectives of our experiments in this paper
were to demonstrate the cost/latency trade-off of the range
query algorithms, and to show that because of the use of
a load-balanced trie-structured overlay network, the cost of
range queries is independent of the data distribution and the
size of the range, but only dependent on the used algorithm
and the size of the answer set which we expected from the
theoretical analysis of Section 3. From the experimental
results presented in the following, we can observe that the
cost and latencies are indeed independent of the distribu-
tion and indirectly prove that the overlay network has good
storage-load balancing characteristics.

Figure 4 shows the costs incurred by range queries in
terms of message latency (hops), i.e., the maximum number
of messages required to hit each sub-partition of the range,
i.e., one peer in each sub-partition. Figure 4(a) shows a di-
rect comparison of the experimental results and Figure 4(b)

gives the standard deviations of each of the four types of
experiments as error bars.

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

size of answer set

ho
ps

shower, uniform
shower, pareto
min max, uniform
min max, pareto

(a) Comparison

0 200 400 600 800
0

5

10

15

size of answer set

ho
ps

shower, uniform

0 200 400 600 800
0

5

10

15

size of answer set

ho
ps

shower, pareto

0 200 400 600 800
0

5

10

15

20

size of answer set

ho
ps

min max, uniform

0 200 400 600 800
0

5

10

15

size of answer set

ho
ps

min max, pareto

(b) Standard deviation

Figure 4. Message latency (hops)

On average we need 3 hops to reach a responsible peer
for both types of algorithms, but the min-max algorithm
then suffers from the sequential traversal of the range to
reach all sub-partitions after reaching the lower bound. This
leads to increasing hop counts with increasing range sizes
whereas for the shower algorithm the number of hops re-
mains constant, i.e., it is rather insensitive to the size of the
answer set as an increase in the number of hops for this al-
gorithm basically means that the range has exceeded one
level in the tree and an additional hop is necessary as the
“shower” has to start at the next higher level. However, this
benefit comes at the cost of an increase in the overall mes-
sages as shown in Figure 5. Figure 5(a) shows a direct com-
parison of the experimental results and Figure 5(b) gives the
standard deviations of each of the four types of experiments
as error bars.

The shower algorithm requires a slightly higher number
of messages but improves latency as it sends them to the

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

size of answer set

m
es

sa
ge

s

shower, uniform
shower, pareto
min max, uniform
min max, pareto

(a) Comparison

0 200 400 600 800
0

5

10

15

20

25

30

size of answer set

m
es

sa
ge

s

shower, uniform

0 200 400 600 800
0

5

10

15

20

25

30

size of answer set

m
es

sa
ge

s

shower, pareto

0 200 400 600 800
0

5

10

15

20

size of answer set

m
es

sa
ge

s

min max, uniform

0 200 400 600 800
0

5

10

15

size of answer set

m
es

sa
ge

s

min max, pareto

(b) Standard deviation

Figure 5. Message cost

responsible peers in parallel. Therefore all peers respon-
sible for a range section are reached after 3 hops (in the
experiment’s setup) independent of the range size. Range
queries with an answer set size of 50 are answered mostly
by one peer because peers on average are responsible for¾[G data items. It can further be seen that both algorithms
perform equally well for both data distributions and scale
well as expected. An increase of the answer set size by a
multiplicative factor of the average peer storage size yields
an additional message on average which is the best possible
result achievable with limited storage available at the peers
and again indirectly proves the optimal behavior of the un-
derlying load-balancing algorithm.

Figure 5 also shows the total number of peers involved
in a range query, i.e., the number of peers forwarding or
replying to a range query. For the min-max algorithm this
number is equal to the number of messages because only
one message is first routed to the lower bound and then for-
warded to the higher bound. Therefore the number of peers
forwarding a query to a peer of the desired range is smaller

than for the shower algorithm. More peers are involved dur-
ing the shower algorithm because messages are sent in par-
allel to reach desired peers (partitions).

In terms of query latency, it is interesting to see that the
shower algorithm is almost insensible towards answer set
sizes. As can be seen in Figure 6 the latency is nearly con-
stant.

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

size of answer set

tim
e

[s
ec

on
ds

]

shower, uniform
shower, pareto
min max, uniform
min max, pareto

(a) Comparison

0 200 400 600 800
0

20

40

60

80

100

size of answer set

tim
e

[s
ec

on
ds

]

shower, uniform

0 200 400 600 800
0

20

40

60

80

100

size of answer set

tim
e

[s
ec

on
ds

]

shower, pareto

0 200 400 600 800
0

50

100

150

size of answer set

tim
e

[s
ec

on
ds

]

min max, uniform

0 200 400 600 800
0

50

100

150

size of answer set

tim
e

[s
ec

on
ds

]

min max, pareto

(b) Standard deviation

Figure 6. Query latency (time)

This can be explained by the fact that a considerable
number of data items would have to be added before the
trie increases its height which is the major contribution to
the latency for this algorithm. For the min-max case the
latency increases for obvious reasons as messages are for-
warded sequentially which increases the latency. Here an
increase of the height of the trie has a much more dramatic
influence as the min-max algorithm heavily depends on the
width of the interval. While increasing the height of the
trie means only an additional hop for the shower-algorithm
which is processed largely in parallel, for the min-max al-
gorithm the number of sequential messages increases by a
factor of 2 on average. Note that this is expected from the-

ory, since the height of the tree will increase by 1 only if ap-
proximately twice the data items are in the same range, and
in the min-max algorithm, both latency and message cost is
proportional to the number of data-items in the answer-set.

A side result which can be inferred from these plots is
that the smallest range queries involving 3–5 peers take
approximately 10–20 seconds on average. Larger range
queries using the min-max algorithm take a multiple of that.
This can be explained by the success of PlanetLab as an ex-
perimental test-bed, since a large number of experiments
are conducted concurrently which considerably slows down
PlanetLab’s overall performance.

Finally, in Figure 7 we show what level of result com-
pleteness we could achieve by our range queries.

0 100 200 300 400 500 600 700 800
85

86

87

88

89

90

91

92

93

94

95

size of answer set

su
cc

es
s

ra
te

 [%
]

shower, uniform
shower, pareto
min max, uniform
min max, pareto

Figure 7. Result completeness

This measure represents the percentage of received data
items as answers to a range query with respect to the actual
number of data items inserted (present) in the specific range.
The result completeness is around 90% and is mainly inde-
pendent of the range sizes and the data distributions. We ob-
served several problems during our experiments in respect
to the PlanetLab environment, for example, communication
problems and crashes of PlanetLab nodes (not of the tested
P-Grid system but the physical PlanetLab nodes), which ex-
plain the non-exhaustive results. Note that, while it is an is-
sue that is beyond the scope of this paper (such failures be-
cause of unreliable peers are characteristic of any deployed
P2P system, the relatively high success rate in fact demon-
strates the robustness of P-Grid under churn. Smaller scale
experiments in a local environment with lower numbers of
nodes and node failures have proven the functional correct-
ness of our implementation and provided a 100% success
rate. To increase the success rate on PlanetLab we could
increase the replication factor, i.e., data is replicated more
often, and thus node failures could be possibly compensated
better. This will increase the maintenance overhead but
should provide better results. However, due to the duration

of the experiments and the lack of possibility to assess the
conditions on PlanetLab that caused a certain experimental
result and behavior, we have no experimental evaluation of
this strategy yet. In the experiments discussed above we
used a replication factor of 5 on average (in fact, each data
item was replicated between 1 and 10 times). Taking this
into account and the very dynamic situation on PlanetLab a
success rate of 90% seems reasonable. In future work, we
will explore the possibility to adapt replication to the dy-
namic situation on the physical network to improve on the
result completeness.

5. Related Work

Traditional database research has shown that tries are
among the most practical data structures to support range
queries. The work on prefix hash trees (PHT) superimposes
a P-Grid-like trie onto an arbitrary structured overlay net-
work [18]. The advantage of PHT is thus its universal us-
ability on top of any DHT, however, it is considerably less
efficient as we had argued earlier. Using a native trie struc-
ture as is done in P-Grid makes range queries more efficient
in terms of both message cost and latency. Note that the
analysis we did in this paper gives the costs in terms of the
total number of overlay network messages. The analysis
of PHT provides the number of DHT searches for answer-
ing a range query, and each of these DHT searches for a
typical DHT (like Chord [24]) involves logarithmic num-
ber of messages in terms of the key space partitions (alter-
natively peer population). This is due to the fact that se-
mantically close data items are not necessarily stored close
to each other in the overlay network (high fragmentation),
and hence, multiple overlay network queries are required
to locate all the content. In contrast, tries cluster semanti-
cally close data items which in turn enable efficient range
access. Another recent approach [15] uses a hierarchical
tree structure but because of the hierarchy, it inherently has
poor fault-tolerance and poor query load-balancing charac-
teristics.

To support approximate range queries, locality-
preserving hashing to hash ranges instead of keywords is
used in [13]. An improvement of this approach to support
exact range queries is proposed in [22]. The fundamental
problem of these approaches is that the ranges themselves
are hashed, and hence, simple key search operations
are not supported or are highly inefficient. Since both
key and range queries are needed, it is desirable to have
one mechanism supporting both, instead of maintaining
separate hash table for keys, and separate hash tables for
ranges, because such a strategy fails to reuse the resources
of the peers. These approaches [13, 22] lead to very bad
fragmentation even for related ranges, and can result in
either poor storage-load balancing or inefficient access.

Moreover, since they use CAN as the underlying network,
the search efficiency guarantees hold only for uniform
partitioning of the space, which conflicts with storage load
which is arbitrarily distributed, as will be the case for
caching range queries, more so because queries will also be
non-uniformly distributed.

In terms of key search efficiency, support for range
queries and storage load-balancing, there are some inter-
esting novel structured overlay network abstractions which
exhibit performance comparable to our trie-structured pro-
posal: Skip Graphs [7, 8] which are based on skip lists [17],
and Mercury [9] which is based on small-world routing.
Skip Graphs can be viewed as a trie of skip lists that share
their lower levels. As Skip Graphs preserve the ordering
relation among keys they also support range queries. Sim-
ilar to the shower variant of our algorithms, range queries
are resolved by finding any node in the interval (

�������	��

�
messages) and then broadcasting the query through the

±
nodes in the interval which requires

����±É���	�Ê

�
messages.

In total this is still of logarithmic complexity but quite a
bit higher than the effort (in terms of messages) incurred
by our approach. Mercury, on the other hand, retains the
data sequentially, dynamically assigns the range for which
individual peers are responsible in order to provide good
load-balancing, and uses small-world routing among the
peers. Multiple-attribute range queries by using an individ-
ual index for each attribute as proposed in Mercury can be
done based on any indexing scheme, including ours. The
important and unaddressed issue in all existing literature
on multiple-attribute range queries is the issue of efficient
joins. Though Skip Graphs and Mercury offer compara-
ble complexity characteristics in terms of search and range
queries as our approach, these systems have so far only been
evaluated with simulations, and no real implementations or
experimental evaluations in a real-world networking sce-
nario exist. For our approach, however, we do not only
provide the theoretical study of the performance, but also
report on deployment and experimentation of a fully imple-
mented overlay network.

There exist many other range query proposals, which are
of lesser relevance than the approaches discussed above. A
detailed survey of search mechanisms in P2P systems, in-
cluding range queries can be found in [20].

6. Conclusions

Non-trivial search predicates such as range queries are
an important area of ongoing research to improve the ver-
satility of structured P2P systems. In this paper we have
described how range queries can be implemented on top of
a trie-structured DHT. A theoretical analysis showed the ef-
ficiency of the approach as its algorithmic complexity in
terms of messages is independent of the size of the queried

ranges and only depends on the size of the result set while
supporting arbitrary range granularity. We evaluated our al-
gorithms for range queries in a practical setting with experi-
ments on the PlanetLab infrastructure. Over the last years of
research on P2P systems there have been numerous propos-
als on paper, but what is increasingly necessary is to have
fully-fledged implementations of these systems that can be
tested in practice, i.e., pass the only relevant test, which is
practical applicability.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
P2P information systems. In Sixth International Conference
on Cooperative Information Systems (CoopIS), 2001.

[2] K. Aberer. Efficient Search in Unbalanced, Randomized
Peer-To-Peer Search Trees. Technical Report IC/2002/79,
Ecole Polytechnique Fédérale de Lausanne (EPFL), 2002.

[3] K. Aberer. Scalable Data Access in P2P Systems Using Un-
balanced Search Trees. In 4th Workshop on Distributed Data
and Structures (WDAS’2002), 2002.

[4] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: A Self-
organizing Structured P2P System. ACM SIGMOD Record,
32(3), 2003.

[5] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. In-
dexing data-oriented overlay networks. 31st International
Conference on Very Large Databases (VLDB), 2005.

[6] K. Aberer and M. Punceva. Efficient Search in Structured
Peer-to-Peer Systems: Binary v.s. k-ary Unbalanced Tree
Structures. In International Workshop On Databases, In-
formation Systems and Peer-to-Peer Computing (DBISP2P),
2003.

[7] J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load balanc-
ing and locality in range-queriable data structures. In ACM
PODC, 2004.

[8] J. Aspnes and G. Shah. Skip graphs. In ACM-SIAM Sympo-
sium on Discrete Algorithms, Jan. 2003.

[9] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. SIGCOMM
Computer Communication Review, 34(4):353–366, 2004.

[10] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3), July 2003.

[11] N. Daswani, H. Garcia-Molina, and B. Yang. Open Prob-
lems in Data-Sharing Peer-to-Peer Systems. In 9th Interna-
tional Conference on Database Theory (ICDT), 2003.

[12] A. Datta, M. Hauswirth, and K. Aberer. Updates in
Highly Unreliable, Replicated Peer-to-Peer Systems. In In-
ternational Conference on Distributed Computing Systems
(ICDCS), 2003.

[13] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate
Range Selection Queries in Peer-to-Peer Systems. In 1st
Biennial Conference on Innovative Data Systems Research
(CIDR 2003), 2003.

[14] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, and I. Stoica. Complex Queries in DHT-based
Peer-to-Peer Networks. In IPTPS, 2002.

[15] C. Y. Liau, W. S. Ng, R. Panicker, S. Bressan, and K.-
L. Tan. Efficient range queries and fast lookup services
for scalable P2P networks. In International Workshop on
Databases, Information Systems, and Peer-to-Peer Comput-
ing (DBISP2P), 2004.

[16] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer
Information System Based on the XOR Metric. In IPTPS,
2002.

[17] W. Pugh. Skip lists: A probabilistic alternative to balanced
trees. Communications of the ACM, 33(6), 1990.

[18] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and
S. Shenker. Brief Announcement: Prefix Hash Tree. In ACM
PODC, 2004.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
ACM SIGCOMM, 2001.

[20] J. Risson and T. Moors. Survey of Research towards Ro-
bust Peer-to-Peer Networks: Search Methods. Technical Re-
port UNSW-EE-P2P-1-1, University of New South Wales,
Sydney, Australia, Sep. 2004. http://www.ee.unsw.edu.au/Ë timm/pubs/robust p2p/submitted.pdf.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 2001.

[22] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A
Peer-to-peer Framework for Caching Range Queries. In 20th
International Conference on Data Engineering (ICDE),
2004.

[23] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl.
Hypercup–hypercubes, ontologies, and efficient search on
peer-to-peer networks. LNCS, 2530, 2003.

[24] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for
Internet Applications. In ACM SIGCOMM, 2001.

