
Technical report LSIR-REPORT-2006-008

Light-weight Internet-scale Universal Storage

[Technical Challenge]

Marcel Karnstedt, Kai-Uwe Sattler
TU Ilmenau, Germany

{marcel.karnstedt|kus}@tu-ilmenau.de

Manfred Hauswirth, Roman Schmidt
EPFL, Switzerland

{manfred.hauswirth|roman.schmidt}@epfl.ch

ABSTRACT
Many new applications, for example Wikis, social networks,
and distributed recommender systems, require the efficient
integration of decentralized and heterogenous data sources
at a large scale. In this paper, we present our vision of a
universal storage for RDF-like triple data based on a struc-
tured P2P system and the universal relation model as its
key enabling technologies to achieve flexibility, robustness,
and efficiency for large-scale distributed data storage and
query processing. We outline the steps we have already ac-
complished successfully and discuss a roadmap to achieve
the final goal of a practical, light-weight implementation of
our storage system.

1. INTRODUCTION
An increasing number of applications on the Web are

based on the idea of collecting and combining large public
data sets and services. In such public data management sce-
narios, the information, its structure, and its semantics are
controlled by a large number of participants and integration
and data management functionalities come into existence
through the collaborative efforts of the users, i.e., the sys-
tem’s public. Examples of such applications are Wikipedia,
social networks, such as friend-of-a-friend networks, or rec-
ommender systems.

Despite being distributed or decentralized in respect to
data from a conceptual point of view, the supporting infras-
tructures of these systems still are inherently centralized,
as in the original web approach where web servers manage
their data locally and only communication and hyper-linking
introduce the aspect of decentralization (though the Web it-
self is decentralized). For example, in Wikipedia articles are
edited in a decentralized way, but adding the information
permanently to the (central) data collection is done under
central control; in social networks, e.g., friend-of-a-friend
networks, although inherently decentralized, users typically
enter via centralized portals and data management is cen-
tralized at the portal. Though often centralization makes
sense to maintain full control of the information manage-
ment, the downsides are bottlenecks and single-point-of-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

failures, which have to be accounted for by expensive hard-
ware and backup Internet connections.

In this paper, we argue for a decentralization of data man-
agement for novel web applications and search engines. This
means that information sources are highly distributed, data
is described according to heterogeneous schemas, no partic-
ipant has a global view of all information, and data and
service quality can only be guaranteed in a best effort way.
Best effort may seem to be a severe limitation at first glance.
However, many services we use on a daily basis follow this
approach and still provide meaningful service, for example
email, DNS, and P2P systems which do not provide any
“transactional” service guarantees.

Our argument for decentralization is supported by prac-
tical problems of existing infrastructures. For example,
Google’s long crawling times to collect index data works
fine for the current Web with only few highly dynamic and
data sources, e.g., news, weather, etc., which are known
a-priori and thus can be prioritized. For public data man-
agement systems with highly dynamic data this approach,
however, is inadequate, as it is unclear which of the many
nodes to prioritize. The general problem of data freshness
and accuracy remains unsolved, however, and can only be
addressed properly if the data is provided and accessed in-
stantaneously from where it is generated, i.e., the partici-
pants of the system. This problem can be seen as a modern
manifestation of the the old pull vs. push / synchronous vs.
asynchronous problem in distributed systems. Additionally,
centralized systems as Google require prohibitively high in-
vestments into infrastructure, which are another impeding
factor.

For such type of public information systems, the P2P ap-
proach offers an interesting alternative to existing informa-
tion system architectures. On the infrastructure side, data
is accessed directly at the source, i.e., always fresh, efficient
indexing is available, and the systems scale well in terms
of nodes and data mounts. Additionally, new systems can
be deployed at very low costs as no specialized infrastruc-
tures are required as the resources of the participants are
being used, high-quality data from the “edge” of the Inter-
net, i.e., the annotated knowledge of the participants, can
be made available very easily, and the systems are robust
due to their decentralized architecture. On the data level,
however, new research problems have to be addressed, the
most prominent being: Data may exist in a large number
of different schema organizations, it is unclear how trust-
worthy the data is, and expressivity of queries an possible
guarantees (existence, completeness, etc.) are limited at the
moment.

Despite these open questions, we argue that global-scale
universal distributed storages have a number of important

Technical report LSIR-REPORT-2006-008

advantages that outweigh the problems and are a new type
of Internet storage system. Our vision is to build a light-
weight universal distributed storage for public data/meta-
data as an enabling backbone technology for storage, which
exploits the gigantic storage and processing capacity of the
available Internet nodes in the same way as the network layer
exploits the worldwide communication devices for routing
messages between nodes. In the following sections, we will
present the challenges to be addressed and possible solu-
tions.

2. CHALLENGES
In contrast to systems such as OceanStore [14], which aim

at secure archival storage for a single data source, we aim
at integrating data sources into a universal storage at an
Internet scale. While some of the challenges may be simi-
lar, there exist several different aspects and others have to
be taken into account differently because of disjoint require-
ments. We overview the key issues for a universal store in
the following and classify the challenges along three ques-
tions:

(1) How to structure and organize data in massively dis-
tributed settings?

(2) How to query data and how to query efficiently?
(3) What is necessary to build a robust and practical so-

lution?

The first question deals with data organization and raises
two challenges:
Genericity and flexibility. Because we cannot assume
that all users and applications agree to a common schema,
a generic and extensible schema is required for structuring
data. It should facilitate to add new elements without re-
structuring or conflicts. This should be accompanied by a
schema-independent query language relieving the user of the
burden to know relations, classes or element paths. A good
choice would be a universal relation model developed in the
1980ies or —as a new incarnation—an RDF-like triple-based
model.
Dealing with heterogeneity. In order to be able to com-
bine data from different domains without forcing all provi-
ders to use the same schema, techniques for resolving het-
erogeneities both on schema level (different names or struc-
tures for the same concept) as well as on data level (different
representations of the same real-world object) are required.
Particularly in large systems, resolving conflicts should be
left to the individual user but be supported by appropri-
ate modeling concepts (e.g., correspondence relationships for
schema elements) as well as by explicitly handling schema
information as data.

The second question is related to query processing with
the following challenges:
Expressiveness of queries. Querying data in a large-scale
distributed storage requires both classical DB-like queries
allowing to restrict and combine data (selection, projection,
join, set operations) as well as IR-style queries (e.g., keyword
search over all attributes, similarity). In addition, a query
language for this domain should support querying schema
data (attributes, correspondences) as well and treat this as
plain data.
Efficient query operators. Distributed implementations
of the query operators should come with worst-case guar-
antees (e.g., O(log n) for DHTs) and exploit the features
of the underlying infrastructure (e.g., for DHTs hash-based
placement, topology-aware routing and multicasting). Fur-
thermore, processing more complex queries, which typically

result in several equivalent execution plans, should involve
cost-based and adaptive query optimization considering the
dynamicity of the whole network and the autonomy of the
individual nodes.

Question (3) touches practicability of a large-scale dis-
tributed platform. Among others the main challenges are:
Scalability. Certainly, an important property of a dis-
tributed system is scalability wrt. the number of nodes.
For an overlay network based on a DHT this is inherently
guaranteed for lookup operations. However, scalability has
to be also addressed for more complex query operations as
well as particularly for data import/update (e.g., bulk in-
serts/updates) and more generally maintenance operations.
Robustness and availability. A distributed storage has
to be robust and reliable, which basically means to be re-
silient against node and link failures. This has to be ad-
dressed by maintaining redundant links (as already provided
by DHTs), but also by replicas of data. Data replication
raises several further issues, such as the required number
of replicas in order to guarantee a degree of availability or
the strategies used for update propagation in a decentralized
environment. Moreover, the existence of replicas allows the
system to choose among different nodes for retrieving data
based on the current load of nodes, but requires distributed
monitoring of load in a dynamic environment.
Privacy, trust, and fairness. In a DHT-based overlay
network where data is not stored on a provider’s site there
exists a strong requirement to prevent malicious behavior of
nodes (e.g., modifying locally stored data). Thus, privacy
of the hosted data as well as trusting peers on the returned
result of a query are important challenges. Secondly, a fair
distribution of data and/or load has to be guaranteed in
order to avoid negative affect of the overall performance.

In the following sections, we present our approach to meet
most of these challenges and discuss ways to address the
remaining ones.

3. DATA ORGANIZATION
P2P Infrastructure. Structured P2P overlays offer many
features useful for building a universal storage. They scale
well, offer logarithmic search complexity in the number of
nodes and are based on hashing for data placement, which
means that customized versions of existing database algo-
rithms are candidates for fast implementation of a concrete
system.

Our DHT of choice is the trie-structured overlay network
P-Grid [1]. In P-Grid, nodes are at the leaf level of a vir-
tual binary trie inducing no hierarchy of nodes. The trie is
constructed by pair-wise interactions between nodes with-
out central coordination nor global knowledge. While nodes
incrementally partition the key space during runtime of the
overlay, they keep references to each other to enable prefix-
based query routing. A prefix-preserving hash-function as-
signs data stored in P-Grid to key partitions respectively
nodes. While an order-preserving hash function as used in
P-Grid keeps semantic relations between data, it requires
sophisticated load-balancing to deal with skewed data distri-
butions. P-Grid includes a mature load-balancing technique
able to deal with nearly arbitrary data skews [2]. Other
DHTs such as Chord use a uniform hash function to achieve
load balancing by randomly distributing data in the key
space, while P-Grid chooses to load-balancing in favor of
more efficient implementation of higher-level query predi-
cates, for example, substring search, efficient range queries
[7] and similarity search [9]. While P-Grid can support this
through its basic infrastructure, other DHTs require addi-

Technical report LSIR-REPORT-2006-008

tional structures, e.g., in Chord an additional trie-structure
is constructed on top of its ring-based overlay network to
support range queries. Additionally, P-Grid comes with an
update functionality with lose consistency guarantees [6]. In
contrast to most other DHTs, overlays can easily be merged
in a parallel fashion, for example, if two communities dis-
cover common interests and want to unify their knowledge or
if a network partition had occurred and the DHT fragments
were evolving independently for some time. P-Grid is imple-
mented in Java and available from http://www.p-grid.org/.
Triple Storage. In order to face the challenges of data or-
ganization, we follow the idea of the universal relation model
allowing schema-independent query formulation. However,
because exploiting the features of a DHT for fast lookups
requires to index all attributes, we store data vertically, sim-
ilar to the idea of RDF. RDFPeers [4] exploits a similar data
organization for RDF data as in our work, but does not ad-
dress, for instance, similarity-based queries. If we assume
relational data, each tuple (OID, v1, . . . , vn) of a given rela-
tion schema R(A1, . . . , An) is stored in the form of n triples

(OID, A1, v1), . . . , (OID, An, vn)

where OID is a unique key, e.g., a URI, and the attribute
names Ai may contain a namespace prefix ns which allows
the user to distinguish different relations and avoid conflicts.
Furthermore, the vertical storage supersedes the explicit
representation of null values making the universal relation
approach feasible even for heterogeneous data. Obviously,
this data storage model is exactly the same layout as RDF
– therefore RDF data can be stored seamlessly.

Note that, though we use an OID field, we do not assume
unique and homogeneous identifiers for all objects – instead
the OID is system generated allowing to group the triples
for a logical tuple. Integration tasks, i.e., merging different
tuples representing the same real-world object, are expected
to be performed on top of this in a user/application-specific
way as part of queries.

The hash-based approach of the underlying overlay system
allows for inserting each triple multiple times into the DHT
using different keys. This is analogous to indexing data in
relational systems, as each entry and any combination of the
triples’ entries (e.g., “hot” attributes) may be chosen, and
several kinds of indexes may be implemented (e.g., textual
or spatial indexes). This can increase efficiency of query
processing by far (see section 4). Moreover, by inserting
full triples each time, we introduce a kind of replication on
triple level, additionally to replication on peer level, which
is essential in DHT-based overlay systems.

By default, we index each triple on the OID, Ai#vi (the
concatenation of Ai and vi), and vi. This enables search
based on the unique key, queries of the form Ai ≥ vi, and
using vi as the key for queries on an arbitrary attribute. Like
this, efficient reproduction of origin data, as well as access
to parts of special interest, is ensured in each situation, as
the elements of an origin tuple are stored

(i) clustered – good to achieve low bandwidth consump-
tion and a small number of messages, and

(ii) well distributed – better suited for dynamic situations
and load balancing.

By applying according hash functions, in several DHTs
similar values are stored at the same peer or neighboring
peers, which decreases the efforts incurred in processing
range queries, joins, or similarity operations.
Schema Mapping. On top of the data triple storage we
additionally allow to store data representing a simple kind
of schema mappings in order to overcome schema hetero-

geneities. In a universal relation model, mappings are simply
correspondence links between attributes, whereas different
kinds of correspondences can be represented (e.g., “seman-
tically equivalent”, “subsumes”, . . .).

For example, an equivalence mapping between the at-
tributes A1 and A2 is represented by a triple

(A1, map:equiv, A2)

where map:equiv describes the kind of correspondence and
A1 is the identifier of the source attribute. This additional
metadata can be queried explicitely by the user – or even
automatically by the system to retrieve relevant data with-
out needing the user to interact. Moreover, we think of
schema matchers to “crawl” the system (at regular intervals
or initiated by the user) and find correspondences (semi-
)automatically – thus, the user only needs to join the sys-
tem, provide his (desired) data and/or schema, and may
query remote data at once, without any further intervention
and special knowledge! However, such schema matching ap-
proaches are beyond the scope of this paper. Instead we
refer to the respective work [13].

The introduced data organization helps to deal with some
of the before mentioned challenges, because it provides a
generic and flexible schema, which can even be extended
by meta information to overcome the burden of data het-
erogeneity. By building the triple store on top of a DHT
overlay, we can exploit powerful features of these systems
to create a robust, scalable and reliable distributed storage.
However, problems like trust and privacy in such environ-
ments are treated by the DHT and database research com-
munities, but are far from being solved finally. From the
view of data integration, the introduced model provides a
wide range of capabilities to utilize integration techniques
for dealing with data heterogeneities. But, schemes of dif-
ferent users and communities will still be that heterogeneous
that well-known and unsolved problems of this area, e.g., the
currently unsatisfyingly developed approaches of automatic
schema matching, are still on stage.

4. QUERY PROCESSING
Key lookups, in recent time also range queries on key

level and maybe prefix search, are supported by existing
overlay systems. In order to support the formulation and
processing of DB-like queries we propose a structured query
language VQL (Vertical Query Language), which is derived
from SPARQL [12], and introduce an according logical alge-
bra. There are several works aiming for the support of struc-
tured queries in P2P overlay systems, too. One is PIER [8],
where the authors propose relational algebra operators like
joins on top of a CAN-based overlay, but no advanced oper-
ators like similarity joins or ranking operators. Query oper-
ators such as equi-selection, range selection and hash joins,
and their implementation, using modified Chord search al-
gorithms are presented in [16].

An example VQL query corresponding to the abstract
schema we introduced before looks like:�

�

�

�

SELECT ?v1,?v3,?v2
WHERE { (?o1,?A1,?v1) (?o2,?A2,?v2)

(?o1,year,?v3)
(?A1,map:equiv,?A2)
FILTER (edist(?A1,title)<2)
FILTER (edist(?v1,?v2)<3)

}
ORDER BY ?v3 DESC LIMIT 10

In a VQL query, the targeted triples are formulated in
braces, where variables are indicated by a question mark.

Technical report LSIR-REPORT-2006-008

Optional FILTER statements, that may include specialized
functions (e.g., edist(x,y) calculates the popular edit (Lev-
enshtein) distance between two strings x and y), are used
to provide filter predicates returned triples have to match.
Further, the basic construct remembers the structure of SQL
queries, including obligatory SELECT and WHERE blocks, op-
tional statements like ORDER BY and LIMIT, as well as ad-
vanced ones like SKYLINE OF.

The semantic of the figured query is not the point, rather
we want to present a representative set of the operations
the search engine supports: the query represents a string
similarity join between the values v1 and v2 of two attributes
A1 and A2. For A1, we only want to select attributes in an
edit distance lower than 2 to the term title, which stands
exemplarily for a filter operation on schema level. The join
attribute A2 is determined using special triples symbolizing
schema mappings as introduced in section 3. Finally, we
want the data item represented by OID o1 (this could be,
for instance, a car, a movie, etc.) to have an attribute year
included. The final result is sorted on the values of this
attribute, resulting in a top-N query due to the included
LIMIT statement.

The algebra supports traditional “relational” operators
(π, σ, ./, . . .) as well as operators needed to query the dis-
tributed triple storage, where the most important are:

• a materialize operation ξ to access triples on leaf level
• another materialize operation ω to “fill” partial tuples

with missing attributes and values (implemented as a
special join ./OID on the generic object ids)

Operators of both classes can be freely combined and are
applicable to schema, instance and metadata level. Fur-
thermore, in order to support large-scaled and heteroge-
neous data collections, we extend the set of operators by
special operators like similarity operators (e.g., similarity
join) and ranking operators (e.g., top-N , skyline). Simi-
larity operations are an extremely important and essential
part of a universal storage as we propose, and have been
considered in, e.g., [3] and [15] before, but both works lack
details and an extended experimental evaluation. At the
one hand, this applies to data integration tasks on schema
level (e.g., attributes representing identical semantic mean-
ings could be named differently), as we briefly discussed in
section 2. On the other hand, this equipollently applies
to instance level, as such similarity operations are urgently
needed for determining schema mappings (e.g., when a new
user initially joins the system) and for overcoming problems
occurring from erroneous data due to the union of a wide
range of individual users and/or communities. But, rather
than providing a concrete way of mapping schemes and in-
tegrating data, we provide a wide range of operations and
techniques to achieve the integration task, which finally is
always due to the individual user. Despite this wide func-
tionality, query formulation is based on a simple and small
set of VQL clauses.

In our environment, for each logical operator there are sev-
eral physical implementations available and in development.
All of the implemented operators only rely on functionality
provided by the overlay system (key lookup, multicasts, pro-
vided routing strategies, ...). They differ in the kind of used
indexes, applied routing strategy, parallelism, etc. To give
an example, in [10] we discussed several possibilities of pro-
cessing string similarity joins and selections. In this context,
we proposed a q-gram index (q-gram: a substring of fixed
length q) for the introduced triple storage, which means we
additionally insert triples by hashing on the q-grams of an
attribute’s value and/or name. Based on this, in contrast to

“naive” key lookups or range queries, similar strings can be
located by requesting a very small set of candidate strings
– see, e.g., [9] for details. An enormous advantage of the
triple storage is that the processing of each physical oper-
ator – analogous to their logical equivalents – is based on
the same principles and algorithms on all levels: schema,
instance and meta level. Picking up the idea from section 3:
automatic schema matchers could utilize provided similarity
operators to find correspondences – and so are completely
integrated into the physical level of our system as they are
into the logical level.

As a representative for the set of physical operators we
briefly present our implementation of a skyline operator.
Each element of a skyline is not dominated by any other
data item with respect to a set of target ranking functions.
This operator is very popular in large-scaled data collec-
tions, as it is capable of providing a quick but meaningful
overview of actual data items. Moreover, the processing of
several target ranking functions included in one such skyline
query reflects a classical user behavior in distributed storage
environments as we propose. On this basis, efficiently imple-
mented skyline operators are a powerful method to attack
challenges like scalability and the expressiveness of queries.

4321

min(y)

min(x)

y

x

minimize x
minimize y

Target functions:

Figure 1: Skyline approach

Figure 1 gives an overview of the implemented skyline pro-
cessing strategy. Rather than collecting all relevant data at
a selected peer that computes the global skyline, we ask each
peer responsible for a part of the queried dimensions (i.e.,
attributes) to determine a local skyline (in the figure there
are 4 peers responsible for distinct partitions of the final
skyline, symbolized by a corresponding number in a circle).
These local skylines are shipped along with query plans and
the last peer involved in processing can compute and return
the global skyline. This approach helps to minimize con-
sumed bandwidth and is best suited for parallel processing.
Further, we are able to narrow the set of peers potentially
responsible for a part of the final skyline: before starting
the actual processing of (local) skyline(s), we determine the
minimum in at least one preferably “selective” dimension.
In the following, we use the values of all other targeted di-
mensions of the so found data item in order to prune the set
of skyline candidates. Figure 1 again illustrate this. If we
determine the minimum of dimension x, any point with an
y-value higher than the determined one cannot be included
in the global skyline (e.g., peer 2 and 4 each can ignore one
point of the local skyline if they know about the y-value of
min(x)). If we determine minima in more than one dimen-
sion, we are able to narrow the search space even more – in
the figure only the shaded rectangle has to be searched.

The actual processing of skylines is based only on the func-
tionality provided by the underlying DHT overlay. Minima
are located using lookups for minimal keys, range queries
and prefix searches are utilized to efficiently route skyline
queries to involved peers in (quasi-)parallel, and are again
based on networking techniques like multicasts.

The physical operators are used to build complex query
plans. The processing of these plans can be described as an
extension of the concept of Mutant Query Plans [11]. For

Technical report LSIR-REPORT-2006-008

each physical operator, and thus, for each query plan, we can
determine worst-case guarantees (almost all are logarithmic)
and predict exact costs [9]. We base these calculations on
the characteristics of the used overlay system and the actual
data distribution. Combining the costs of single operators
we can derive a cost model for choosing concrete query plans.
Currently, we are able to enumerate several physical query
plans for simple VQL queries, predict corresponding costs,
choose the best plan and process it. Coming next we will
extend this to arbitrary complex queries and an adaptive
processing strategy, repeatedly considering costs and current
network situations at each peer involved in a query.

5. IMPLEMENTATION AND EVALUATION
Figure 2 shows the architecture of the implemented sys-

tem. Based on the P-Grid DHT layer, triple storage func-
tionality is provided by the TripleManager, which is called
by P-Grid’s StorageService to store triple data and to pro-
cess structured queries as describe in the previous sections.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

1 2 3 4

Storage
Service

Query
Executor

Analyzer

store VQL

Triple

Manager

Universal Storage

2

3

4
1

P
−

G
rid D

H
T

T
riple S

tore

P2P basic layer
0

00 01 11

1

10

Network layer (TCP/IP)

P2P storage layer

Triple storage layer

QueryPlan Network

User interface

Figure 2: Architecture of application client

A new node joins the universal storage system by start-
ing a copy of the Java client, optionally inserting own data.
Distribution of the triples among nodes according to the
hash keys, establishment of routing tables, replication and
data exchange are provided by the P-Grid layer. Naturally,
this requires some time due to the scale of the system and
the incurred networking delays. Queries can be issued im-
mediately, but very recent data may only be found after it
has been in the system for a certain time (as in any DHT).
Queries are formulated in VQL which the Analyzer uses to
generate logical query plans. QueryPlans are wrapped into
P-Grid messages and routed to the affected peers in the
DHT. The binary key(s) required for this are generated by
the plan operator(s). Once a responsible peer receives a
query plan, the TripleManager delegates the processing to a
local copy of the QueryExecutor. Here, logical plan opera-
tors are replaced by physical implementations based on cost
estimates, and are processed. Partial results are inserted
into query plans and shipped along, until a final result is
received at a query’s initiator.

Currently, we implemented several variations of similarity
selections, similarity joins and ranking operators. These can
be combined with the introduced triple-based operators ω
and ξ, as well as simple operators only wrapping P-Grid core
functionality, e.g., key lookup. Several new operators, like a
Skyline operator, and new variants of existing operators are
under development.

We conducted evaluation using the basic system already
implemented. In order to be able to evaluate the system

we decided to run experiments on PlanetLab [5] to obtain
results from large-scale experiments under realistic network-
ing conditions. PlanetLab (http://www.planet-lab.org/) is
a global testbed for large-scale experiments with distributed
systems. At the moment it consists of approximately 600
nodes geographically distributed over the whole planet run-
ning a modified version of Linux to support efficient admin-
istration and resource sharing for large-scale experiments.
Nodes are connected via a diverse collection of links. When
interpreting the results presented in the following, it is im-
portant to consider that PlanetLab is shared by a large num-
ber of research groups for experiments that are executed in
parallel and thus, mutually influence the performance con-
siderably, especially with respect to absolute latency.

The aim of these experiments was to evaluate bandwidth
consumption and number of messages as the key perfor-
mance characteristics in DHT overlays. Furthermore, the
experiments give a first proof of correctness for a cost model
proposed in [9]. We used a network of approximately 400
peers each running on a dedicated physical PlanetLab node.
Each node inserted 10 strings of lengths between 8 and 45
characters, randomly chosen from a 4000 entry sample of
movie titles from the IMDB database. With all q-grams
and replication each peer was responsible for approximately
900 index entries. The constructed P-Grid tree had a height
of 8. We ran similarity queries which affected data from
all partitions of the data set. A set of 5 randomly chosen
strings was queried in distance 3 using q-gram based simi-
larity selections. We extended the query mix by 5 similarity
string joins. The left input of these joins was provided by
a q-gram based selection in distance 1. We set the actual
join distance for tuples from the right to 3. Each peer initi-
ated a randomly generated query mix like this by starting a
query every 5-8 minutes. The following figures show the av-
erage number of messages, average bandwidth consumption,
respectively, measured per minute at each peer.

340 360 380 400 420
0

10

20

30

40

50

60

Time [minutes]

M
e

s
s
a

g
e

s

query estimated

query

query reply

420 440 460 480 500 520
0

10

20

30

40

50

60

Time [minutes]

M
e

s
s
a

g
e

s

query estimated

query

query reply

Figure 3: String similarity costs

The left part of figure 3 shows the measured number and
estimated number of messages for the similarity string joins.
From time 340-380 (time 0-340 was used to bootstrap the
P-Grid overlay system) we ran a q-gram based join opera-
tor and predicted corresponding costs. From time 380-420
the plot of estimated costs also shows the estimations for a
more naive join variant based on sequentially querying all
peers responsible for an attribute. Due to its inefficient na-
ture, we did not achieve useful results with this operator
in the described experimental setup. This is anticipated by
the estimated costs as well. As we want to determine the
correct relations between costs of different physical imple-
mentations, rather than exact costs, these results are fine.
The plot shows that we are able to achieve this.

In the right part of figure 3 we present analogous results
for similarity selections. Time 420-480 corresponds to q-
gram based variants again, whereas for time 480-520 pre-
dicted costs for the inefficient sequential implementation are
plotted. Similar to the experiments on joins, the plots show

Technical report LSIR-REPORT-2006-008

the correctness of our cost model, and that bad performance
is predictable a-priori.

420 430 440 450 460 470 480
0

2

4

6

8

10

12

Time [minutes]

H
op

s

max
std. deviation
average

Figure 4: Number of hops

Figure 4 shows the number of hops needed for process-
ing both types of mentioned similarity selections. As the
techniques applied here represent basic building blocks for
advanced operators, our approach promises to be an effi-
cient implementation of a large-scaled distributed storage,
even for skewed data distributions and dynamic and unsta-
ble environments.

To the best of our knowledge, a size of 400 peers is more
than each system similar to our approach was ever run on.
The consumed bandwidth (figure 5) and produced amount
of messages for the q-gram based processing are accept-
ably low. Considering the satisfyingly accurate prediction of
costs in an environment as dynamic and unstable as Plan-
etLab, our approach promises to be a very scalable and per-
forming universal storage solution.

340 350 360 370 380
0

50

100

150

200

250

Time [minutes]

B
a

n
d

w
id

th
 [

B
p

s
]

query

query reply

420 430 440 450 460 470 480
80

90

100

110

120

130

140

150

160

Time [minutes]

B
a

n
d

w
id

th
 [

B
p

s
]

query

query reply

Figure 5: Bandwidth consumption

6. NEXT STEPS
To address the challenges described in section 2 we have

defined a roadmap. As a premier area we will conduct fur-
ther large-scale experiments on PlanetLab. While analytical
models and simulations are key planning tools, our experi-
ence shows that verification of these models with large num-
bers of controlled experiments are a key factor to tune the
models towards realistic network situations and refine them
for more accurate predictions. In addition to these “de-
signed” experiments we use the use cases of the distributed
semantic desktop under development in the NEPOMUK in-
tegrated EU project (Networked Environment for Person-
alized, Ontology-based Management of Unified Knowledge,
http://nepomuk.semanticdesktop.org/) to construct experi-
ments based on real-world user requirements. The universal
storage outlined in this paper is a key part of the distributed
infrastructure to be delivered in NEPOMUK.

In section 4 we briefly presented the implemented tech-
nique of processing skylines, which was optimized to be ef-
ficient in distributed storage systems as ours. But, this op-
erator also is a good example for the open issues in query
processing. Interesting challenges in this context are, for
instance, how to support the efficient processing of (i) a
wider range of ranking functions and how to exactly com-
bine them with respect to the DHT (e.g., use min at first and
advanced rankings afterwards, or vice versa, etc.), and (ii)
skyline queries over more than two attributes with respect
to the traditionally one-dimensional indexes established on

top of the DHT. These and similar issues are also acute for
other advanced operators, e.g., top-N queries and similarity
joins, particularly on schema level.

Another important issue is reliability, which has to be ad-
dressed on several levels. On top of the inherent features of
a DHT (maintaining redundant links and data replication)
we have to ensure also reliable query answers, i.e., guarantee
completeness of results. Our current push-based processing
strategy is not able to achieve this: if a peer “loses” a query
message, portions of the final result could lost. A possible
solution is to introduce “heartbeat” messages which are sent
to the initiator by each peer participating on the query or
a light-weight “transactional” protocol. This would enable
the monitoring of the query progress and to estimate the
achieved completeness of the result.

We will also investigate better support for data integra-
tion. Though attribute mappings and similarity operations,
such as similarity join, are helpful for integration purposes,
we are interested in (semi-)automatic approaches for deriv-
ing and recommending mappings. Because with our data
organization scheme both similar attributes (i.e., with sim-
ilar names) as well as similar values are stored at the same
or neighboring peers, a combined schema/instance matching
could be performed without crawling the whole network.

7. REFERENCES
[1] K. Aberer. P-Grid: A self-organizing access structure for

P2P information systems. In CoopIS, 2001.
[2] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt.

Indexing data-oriented overlay networks. In VLDB, 2005.
[3] M. Bawa, T. Condie, and P. Ganesan. LSH forest:

self-tuning indexes for similarity search. In WWW, 2005.
[4] M. Cai and M. Frank. RDFPeers: a scalable distributed

RDF repository based on a structured peer-to-peer
network. In WWW, 2004.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Overlay
Testbed for Broad-Coverage Services. SIGCOMM Comp.
Comm. Rev., 33(3), 2003.

[6] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly
Unreliable, Replicated Peer-to-Peer Systems. In ICDCS,
2003.

[7] A. Datta, M. Hauswirth, R. Schmidt, R. John, and
K. Aberer. Range queries in trie-structured overlays. In
IEEE P2P2005, 2005.

[8] R. Huebsch, J. M. Hellerstein, N. Lanham, B. Thau Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In VLDB, 2003.

[9] M. Karnstedt, K.-U. Sattler, M. Hauswirth, and
R. Schmidt. Cost-Aware Processing of Similarity Queries in
Structured Overlays. In IEEE P2P2006, 2006.

[10] M. Karnstedt, K.-U. Sattler, M. Hauswirth, and
R. Schmidt. Similarity Queries on Structured Data in
Structured Overlays. In NetDB’06, 2006.

[11] V. Papadimos and D. Maier. Mutant Query Plans.
Information and Software Technology, 44(4), 2002.

[12] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Cand. Recommendation 6 Apr
2006. http://www.w3.org/TR/rdf-sparql-query/.

[13] E. Rahm and P. Bernstein. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal, 10(4), 2001.

[14] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: The OceanStore prototype. In
USENIX, 2003.

[15] D. A. Tran. Hierarchical Semantic Overlay Approach to
P2P Similarity Search. In USENIX, 2005.

[16] P. Triantafillou and T. Pitoura. Towards a Unifying
Framework for Complex Query Processing over Structured
Peer-to-Peer Data Networks. In DBISP2P, 2004.

