
A Middleware Framework for Scalable Management of Linked StreamsI

Danh Le-Phuoc∗, Hoan Quoc Nguyen-Mau, Josiane Xavier Parreira, Manfred Hauswirth

Digital Enterprise Research Institute, National University of Ireland, Galway

Abstract

The Web has long exceeded its original purpose of a distributed hypertext system and has become a global, data sharing and
processing platform. This development is confirmed by remarkable milestones such as the Semantic Web, Web services, social
networks and mashups. In parallel with these developments on the Web, the Internet of Things (IoT), i.e., sensors and actuators,
has matured and has become a major scientific and economic driver. Its potential impact cannot be overestimated – for example, in
logistics, cities, electricity grids and in our daily life, in the form of sensor-laden mobile phones – and rival that of the Web itself.
While the Web provides ease of use of distributed resources and a sophisticated development and deployment infrastructure, the
IoT excels in bringing real-time information from the physical world into the picture. Thus a combination of these players seems to
be the natural next step in the development of even more sophisticated systems of systems. While only starting, there is already a
significant amount of sensor-generated, or more generally dynamic information, available on the Web. However, this information is
not easy to access and process, depends on specialised gateways and requires significant knowledge on the concrete deployments,
for example, resource constraints and access protocols. To remedy these problems and draw on the advantages of both sides, we try
to make dynamic, online sensor data of any form as easily accessible as resources and data on the Web, by applying well-established
Web principles, access and processing methods, thus shielding users and developers from the underlying complexities. In this paper
we describe our Linked Stream Middleware (LSM, http://lsm.deri.ie/), which makes it easy to integrate time-dependent data
with other Linked Data sources, by enriching both sensor sources and sensor data streams with semantic descriptions, and enabling
complex SPARQL-like queries across both dataset types through a novel query processing engine, along with means to mashup the
data and process results. Most prominently, LSM provides (1) extensible means for real-time data collection and publishing using
a cloud-based infrastructure, (2) a Web interface for data annotation and visualisation, and (3) a SPARQL endpoint for querying
unified Linked Stream Data and Linked Data. We describe the system architecture behind LSM, provide details how Linked Stream
Data is generated, and demonstrate the benefits and efficiency of the platform by showcasing some experimental evaluations and
the system’s interface.

Keywords:
Sensors, Linked Stream Data, Linked Data, Semantic Web, Middleware

1. Introduction

Sensors are already present in a wide range of applications,
for example, environmental monitoring, smart cities, smart
grids, and mobile phone applications. Sensor devices are also
becoming more powerful, not only generating data but also
offering processing capabilities, thus becoming smart devices.
Moreover, advances in network technologies, e.g., the creation
of the Constrained Application Protocol (CoAP), allow these
devices to communicate and publish data on the Web, fostering
the Internet of Things (IoT) paradigm and narrowing the gap to
the Web. It is interesting to see that the IoT is increasingly using
(semantic) Web technologies, to lower the technological thresh-
old for access to such information, for example, COAP, which
is essentially HTTP for resource constrained devices enables

IThis research has been supported by Science Foundation Ireland under
Grant No. SFI/08/CE/I1380 (Lion-II), by the Irish Research Council for Sci-
ence, Engineering and Technology (IRCSET), and by the European Commis-
sion under contract number FP7-2007-2-224053 (CONET).
∗E-mail: danh.lephuoc@deri.org

RESTful services down to the sensor level and the ontologies
proposed by the W3C’s Semantic Sensor Networks Incubator
Group (SSN-XG1) [1]. An example of the application of all
these technologies is given in [2] and it is likely that even more
technologies from the Web will be adapted. This development
greatly benefits both the IoT and the Semantic Web: Data gen-
erated by sensor devices is a growing Web data resource and
users have direct access to these streams of data, and in some
cases, they can also control the data sources remotely. Addi-
tionally, the use of Web technologies makes access simple and
will boost the development of applications using sensor streams
due to the large base of Web developers.

However, until now applications involving both (static) Web
data and (dynamic) sensor data are still limited to single do-
mains. The heterogeneous nature of streams – in terms of data,
data types, and access mechanisms – makes their use and in-
tegration with other data sources a difficult and labor-intensive
task, which currently requires a lot of “hand-crafting”. To ad-

1http://www.w3.org/2005/Incubator/ssn/

Preprint submitted to Journal of Web Semantics January 4, 2015

dress these problems, there have been some recent efforts to
simplify the integration of sensor data with data from other
sources, by providing semantic descriptions for sensor sources
and sensor data streams, e.g., by the SSN-XG. These descrip-
tions follow the standards proposed for Linked Data [3], and the
semantically enriched data being generated is known as Linked
Stream Data [4]. Linked Stream Data is being pursued in a
number of recent projects, e.g., [5, 6, 7, 2, 8], and it promotes an
easy and seamless integration of Linked Data collections with
(and among) heterogeneous sensor data, enabling a new range
of “real-time” applications.

Despite its enormous potential, Linked Stream Data is still
not widely explored. Although based on the Linked Data prin-
ciples, its real-time nature contrasts with standard quasi-static
Linked Data collections, and existing technologies for Linked
Data management cannot be directly applied. Moreover, there
is currently a lack of support for publishing Linked Stream Data
on the Web, so that it can be available to other applications.

To overcome these challenges we have developed the Linked
Stream Middleware (LSM), a platform that brings together
sensor data (or more generally time-dependent data or data
streams) from the real world and the Semantic Web. The LSM
provides an extensive range of functionalities: It provides a
wide range of wrappers (which can be extended by the user)
to access sensor stream sources and transform the raw data into
Linked Stream Data; data annotation and visualisation are pos-
sible through an intuitive Web interface; and live querying over
unified Linked Stream Data and data coming from the Linked
Open Data cloud is enabled by two types of query processors –
a standard SPARQL query processor and CQELS (Continuous
Query Evaluation over Linked Streams) [9], a native and adap-
tive query processor for unified query processing over Linked
Stream Data and Linked Data.

An LSM deployment is available at http://lsm.deri.

ie/ and currently enables access to over 100,000 sensor data
sources from different domains, providing also unified tools for
processing, combining and analysing data, regardless of their
original source. In this paper we first describe the system ar-
chitecture behind LSM and provide details how Linked Stream
Data is generated in Section 2. Then Section 3 describes a large-
scale deployment and demonstrates the benefits of the platform
by showcasing its interface and functionalities along with data
from experimental evaluations. The section concludes with a
report on the lessons learned during the implementation and de-
ployment of LSM and the remaining open challenges. In Sec-
tion 4, we overview related work and put them into context to
LSM. In Section 5, we conclude with a summary of our find-
ings.

For simplicity, we will use the term “sensor data” and “sensor
streams” for any data source which dynamically produces data
and enables access to it. Thus, the scope of data producers we
look at ranges from single sensing devices, e.g., a temperature
sensor, to complex, dynamic aggregations of sensor data.

2. LSM Architecture

The LSM is structured as a layered architecture, which in-
creases flexibility, scalability, and facilitates maintenance. The

layers together cover the entire process, from data acquisition,
to Linked Data publishing and access, until applications. The
LSM architecture is illustrated in Figure 1. Next, we describe
each of the individual layers in detail.

Figure 1: The LSM layered architecture

2.1. Data Acquisition Layer

The Data Acquisition layer is responsible for collecting data
from stream data sources. The data is acquired by the system
via the wrappers. As there is a variety of interfaces for access-
ing sensor readings such as physical connections, middleware
APIs, and database connections, the middleware provides dif-
ferent wrappers to cover a wide range of input formats. How-
ever, they all output the data in a unified format, following the
data layout described in the Data Access Layer. Each wrap-
per is pluggable at runtime so that users can develop their own
wrappers to connect new types of sensors into a live system.

For sensors that can be directly accessed via physical con-
nections such as serial interfaces, IP connections, and wireless
ad-hoc networks, the middleware provides Physical Wrappers.
Based on the specification of each sensor platform, the respec-
tive Physical Wrapper is able to handle the communication pro-
tocol with the sensor and decode the raw data format of its out-
put. Each sensor reading fed into the system is annotated with
the meaning driven by ontologies. In the initialisation phase of
the wrapper, a configuration file specifies the associated mean-
ing of every output reading. The configuration can be provided
manually or via a user-friendly wizard.

Even though Physical Wrappers provide direct access to sen-
sor sources, in most of the deployed sensor systems there is
already a middleware or a sensor data management system re-
sponsible for the sensor data acquisition. In these cases the
data can be accessed via interfaces such as Web services or
RESTful APIs. For instance, this is true for most of the weather
services such as NOAA2, Weather Underground3, WeatherBug,
and Yahoo Weather. In addition, some sensor middlewares like

2National Oceanic and Atmospheric Administration: http://www.noaa.gov
3Weather Underground: http://www.wunderground.com

2

GSN [10] can publish data via Web services or push-based pro-
tocols on HTTP. To mediate the access to such systems, LSM
provides Mediate Wrappers. The Mediate Wrappers use data
transformation rules to map data in a given format into RDF.
For example, sensor data in XML can be transformed to RDF
using XSLT transformations4 and the meanings of the sensor
readings contained in the XML tags are annotated with con-
cepts in the ontology via a XSLT transformation rule.

Sensor data can also be collected and stored in relational
databases. To access these, LSM provides Linked Data Wrap-
pers that expose data from relational databases in RDF via map-
ping rules. The rules act as “annotation templates” to add
semantic meaning to the sensor data stored in relational ta-
bles. They can be represented using mapping languages such
as D2R5 and R2ML6. The Linked Data Wrappers use the map-
ping rules to generate the queries that are sent to the database
in order to retrieve sensor data as RDF triples.

2.2. Linked Data Layer

The Data Acquisition Layer collects raw stream data and
transforms it into triples. The Linked Data Layer, in turn, is
responsible for making the data composable: Global identifiers
are added to the data items, following the Linked Data pub-
lishing principles [11], and an ontology that captures the data
model is used in the triple-based data representation. More
specifically, we use the Semantic Sensor Network (SSN) On-
tology7. Figure 2 illustrates the modular view of the SSN On-
tology. We represent the generated Linked Stream Data in a
layered graph layout, using the vocabulary provided by the on-
tology. An example is given in Figure 3. The layout serves as
a guideline for the annotation process in the Data Acquisition
Layer.

Figure 2: Semantic Sensor Network Ontology

4http://www.w3.org/TR/xslt
5http://www4.wiwiss.fu-berlin.de/bizer/d2rmap/d2rmap.htm
6http://www.w3.org/TR/r2rml/
7http://purl.oclc.org/NET/ssnx/ssn

!"#$%&'(&)*+),-

!./#0&"&,1-

!.230*3).,#)3-

!43.,53)6,.7+'-

!%.,38,93.,53)-

!)3."&':8-

!5#0&";.%#3-!,30*;.%#3-

<=>?@A8"!B+.,- <C3%D?- <EF?@A8"!B+.,- <G?-

88'!H3.,#)3IHJ',3)38,-

88'!+$83)K3"L1-

88'!+$83)K38-
88'!+$83)K38-

88'!&8M)+*3),1IH- 88'!&8M)+*3),1IH-

88'!+$83)K3"M)+*3),1- 88'!+$83)K3"M)+*3),1-

%80!K.%#3- %80!K.%#3- %80!#'&,-%80!#'&,-

88'!5.8;.%#3- 88'!5.8;.%#3-

88'!+$83)K.7+'N38#%,-

!"#$%&'(")*+*)*'

!)&"*('+*)*'$#*,$-%)'*)'./001/21/34.056.57.'

Figure 3: Layered graph layout for Linked Stream Data

We divide the generated Linked Stream Data into two layers:
sensor metadata and stream data. The sensor metadata corre-
sponds to the time-independent information, which is static. It
captures the context in which the sensor readings are obtained.
In the example of Figure 3, the sensor metadata is describing a
“weather station that observes the temperature and humidity
at Dublin Airport”.

The stream data contains the dynamic, graph-based stream
data from the time-varying sensor readings. These readings
have links to their meanings, e.g.“tempValue(18 Celsius) is the
temperature of Dublin Airport at 21:32:52, 09/08/2011”.

To enrich the sensor descriptions and support better integra-
tion with other data sources, the Linked Data Layer also facil-
itates the addition of outgoing links to data in the Linked Data
Cloud. These links can be provided in the annotation module.
For instance, we can add relevant links to DBpedia, Geonames
and LinkedGeoData via spatial relationships, for instance, point
of interests nearby a sensor location.

2.3. Data Access Layer

The Data Access layer supports declarative queries on top of
the Linked Data layer. Queries over Linked Stream Data can be
executed either in a pull-based or push-based fashion. For that,
LSM provides two query processors as described below. Apart
from the online data access, both sensor metadata and stream
data can optionally be archived in a triple storage, facilitating
access to historical information, if required. The triple storage
also provides a Linked Data query processor that supports tradi-
tional pull-based queries via the SPARQL 1.1 query language.
Spatial and temporal queries are also supported as an extension
of SPARQL 1.1. Moreover, the local storage can be integrated
with remote SPARQL endpoints via the federation extension
of SPARQL 1.1. This facilitates the integration of the sensor
datasets available in our middleware with other datasets in the
Linked Open Data Cloud.

As we mentioned before, standard query processing tech-
niques for Linked Data cannot be directly applied for process-
ing Linked Stream Data, due to its dynamic nature: While tra-
ditional Linked Data queries are executed once over the entire
collection and discarded after the results are produced, queries
over Linked Stream Data are continuous. Continuous queries
are first registered in the system, and continuously executed as
new data arrives, with new results being output as soon as they

3

are produced. A detailed discussion of the issues is provided
in [9], which is omitted here due to space constraints.

For processing continuous queries over Linked Stream Data,
the LSM provides the CQELS engine [9]. The query processing
in CQELS is done in a push-based fashion, i.e., data entering
the query engine triggers the processing. As soon as any result
is found, it is sent to the query listeners, which are used to push
the result output data stream of a continuous query to the deliv-
ery channels. A delivery channel can be an application, a mes-
sage bus or a notification/streaming channel (see Section 2.4).
The continuous queries are expressed in the CQELS language,
which is an extension of SPARQL 1.1.

2.4. Application Layer

Through the query processing capabilities of the Data Ac-
cess layer, the Application layer provides application develop-
ment support. It offers a SPARQL Endpoint, a Linked Sensor
Explorer, a Mashup Composer and Notifications/Stream chan-
nels. Sensor metadata and historical sensor readings (if config-
ured to be recorded) can be accessed/queried via the SPARQL
endpoint. Continuous queries over combinations of static and
dynamic data can be registered in the system, and their outputs
are sent to the user-defined notification or streaming channels.
Notification channels such as email, Twitter, and SMS create
messages based on the new query results. Streaming channels
continuously output the results stream using existing streaming
protocols, such as PubSubHubbub 8, XMPP 9 and WebSock-
ets 10.

PubSubHubbub stream channels deliver data to stream sub-
scribers using the Pubsubhubub protocol, via a hub such as
the Google App Hub server11. XMPP stream channels use the
XMPP protocol for streaming data to Instant Messaging sys-
tems such as Jabber12. WebSocket stream channels are used for
Web browsers to enable near real-time Web applications using
sensor data sources via the standardised WebSocket API and
protocol.

The use of these streaming technologies provide great flex-
ibility and ensure compatibility with existing systems. Other
protocols can be added easily.

Since LSM represents all data sources in a unified triple-
based model, we have extended the DERI Pipes [12] to build
a Mashup Composer for LSM. The Mashup Composer enables
the combination of existing data sources into new sensor data
sources following a data stream paradigm. A visual editor pro-
vides an extensive range of ways to combine triple-based op-
erators to mashup the input data sources. Different from DERI
Pipes, which uses SPARQL, the Mashup Composer uses the
CQELS language and query processor.

Finally, the Linked Sensor Explorer enables the exploration
of existing data sources using Linked Data visualisation and
data exploration techniques. A faceted browsing functionality
helps users to filter sensor data based on specific properties,

8http://code.google.com/p/pubsubhubbub/
9http://xmpp.org/

10http://dev.w3.org/html5/websockets/
11http://pubsubhubbub.appspot.com/
12http://www.jabber.org/

such location and sensor type. More details on the Linked Sen-
sor Explorer, as well as other functionalities of the middleware
are presented in the next section, which describes our LSM de-
ployment.

3. LSM Deployment, Evaluation, and Lessons Learned

In this section we describe the deployment architecture and
some of the features available in the live LSM deployment at
http://lsm.deri.ie/. We also present the results of initial
performance tests and discuss the lessons learned from a large-
scale, real world implementation.

3.1. Deployment Architecture
In the longer term, our deployment aims at a large-scale sen-

sor web [13]. The current deployment is the first of multiple
step towards this goal, which are necessary to learn how real
users use a combination of static and dynamic data sources in
real applications. This enables us to understand query and data
load profiles to improve LSM. In this, we follow the accepted
evidence-driven approach based on practical experiments for
large-scale information systems to improve the infrastructure.
Our current deployment provides access to over 110,000 sen-
sor data streams from all continents. The architecture of the
deployment is shown in Figure 4, realising the layered architec-
ture of Figure 1.

Figure 4: Deployment architecture

The majority of the data sources in our deployment are pub-
lished through HTTP as Web services or RESTful APIs, which
are pull based mechanisms. For these sources, the wrappers
periodically fetch each data source to collect raw sensor data
and transform it into triples. The fetching operations are built

4

as asynchronous tasks, scheduled in the fetching cluster. We
use Hadoop as our fetching cluster, and we currently schedule
fetching tasks for over 70,000 data sources. We use Hadoop
to minimise the fetching cycles. Another set of around 20,000
sources are also pull based, but they stream media content that
is not used in the query processing, e.g., traffic camera images,
and they are fetched on demand, outside the fetching cycles.
The remaining 20,000 sources are streamed to LSM in a push-
based fashion, i.e., the wrappers receive the data via a network
connection and push the data into the Message Bus, as de-
scribed below. In the current deployment, we did not encounter
any scalability issue with these data sources.

In the Linked Data layer, LSM buffers the triples received in
the Message Bus and multiplexes the data streams for further
processing. After a detailed evaluation of existing message bus
implementations, we chose RabbitMQ13 for the Message Bus.
RabbitMQ is a messaging publish/subscribe platform in which
the triples are encoded messages exchanged between publish-
ers and subscribers. A wrapper is an example of a publisher.
The data processing operations consuming the data from the
Message Bus are the subscribers. For instance, if data is to
be archived, the archiving operation subscribes to the Message
Bus, in order to receive sensor readings, and then inserts them
into the triple storage as historical readings (this is optional and
depends on the user’s requirements). We use Virtuoso14 for the
triple storage. Besides the historical data, Virtuoso also stores
sensor metadata and Linked Data collections. The live triple
streams themselves are consumed directly from the Message
Bus by the CQELS engine (without using Virtuoso). Conceptu-
ally, the Linked Data layer is comprised of the buffer windows
of the CQELS engine and the triple storage.

Virtuoso also provides a SPARQL query engine with a spatial
extension (Data Access Layer) and a SPARQL Endpoint (Ap-
plication Layer). The Linked Sensor Explorer is deployed in the
Web server. The Web socket server and the PubSubHubbub hub
are also integrated into the Web server to optimally serve the re-
spective stream channels. The RabbitMQ server natively sup-
ports XMPP, so XMPP channels are configured as subscribers
to the Message Bus.

3.2. Supported Features
LSM provides a sensor data exploration interface which uses

a map overlay to display the sensor information as shown in
Figure 5. Several types of sensor data are available, such as
flight status (1), weather (2), nearby metro stations (3), and
street cameras (4). In addition to the live stream data, the his-
torical data of a particular source (if available) can also be vi-
sualised and downloaded in RDF format. Figure 5 shows an
example of data history for a temperature sensor (2a and 2b).

Besides the map overlay, the data can also be accessed via an
interactive faceted search interface, as shown in Figure 6. The
faceted search allows users to filter the information displayed
based on sensor type (given by a sensor taxonomy) and/or sen-
sor location, by choosing an area in the map, or also based on
the sensor specification (physical context, accuracy, etc).

13http://www.rabbitmq.com/
14http://virtuoso.openlinksw.com/

LSM also provides a user-friendly wizard for users who have
sensor sources they would like to publish as Linked Stream
Data. Figure 7a demonstrates the process of annotating sen-
sor data from a source in XML format. After the user chooses
the type of the sensor to be added (step 1), LSM parses the input
source to extract the properties (step 2), which can then be se-
lected and annotated (step 3). Step 4 allows users to add extra
sensor descriptions. Moreover, users can also import external
ontologies into the middleware, to link the available data back
to concepts of their domain.

Besides SPARQL/CQELS endpoints, LSM also provides
tools to create notifications or sensor feeds from live data
sources. An example is given in Figure 7b, where a sensor feed
is expressed in CQELS [9]. The feed created can be fed easily
into any application. To demonstrate the simplicity of building
applications with sensor feeds, we created an example applica-
tions as a blue-print for users, which overlays the up-to-date lo-
cation of a mobile phone on a map, as shown in Figure 7b. The
application runs on Android and contains of only a few lines of
code. The source code and application can be downloaded at
http://code.google.com/p/deri-lsm/.

3.3. Performance Evaluation
The performance of the deployment architecture from Sec-

tion 3.1 depends heavily on the software and hardware settings.
Hence, we have conducted tests to investigate how the system
performs with different settings. We have used the following
setup: The Web server, the Virtuoso storage, and the RabbitMQ
run in dedicated computers, each with the following configura-
tion: 1 x Quad Core Intel Xeon E5410 2.33 GHz, 8GB mem-
ory, 2 x 500GB Enterprise SATA disks, Ubuntu 11.04/x86 64,
Java version 1.6, Java HotSpot(TM) 64-Bit Server VM. The
same configuration is also used for the processing nodes in the
Hadoop cluster. The bandwidths are 1Gb/s for the local net-
works, and 84Mb/s for the Internet connection.

3.3.1. Data Consumption
We have carried out tests on the data consumption for the

70,000 sensor data sources available as Web services or REST-
ful APIs as this is the major load contributor due to schedul-
ing of fetching tasks. The data consumption process consists
of fetching the sensor readings and then buffering the readings
in the Message Bus. The fetching operations are scheduled as
MapReduce tasks that run on the Hadoop cluster. We define
Feed time as the time spent to fetch data from all sources once
(fetching cycle). A fetching cycle is scheduled as concurrent
processing tasks (one task for each data source) in the cluster’s
processing queue. The working threads of the cluster contin-
uously send the outputs to the Message Bus as soon as they
finish each fetching task. The Feed time depends mainly on
two factors: The number of cluster nodes, and the number of
concurrent MapReduce tasks running on each node. We have
varied the number of nodes from 3 to 32 and measured the Feed
time with 10 and 15 concurrent MapReduce tasks per node. We
have also computed the Insert time, i.e. the time it takes to in-
sert the output of a fetching cycle into the triple storage. Results
are shown in Figures 8 and 9.

We can see that in both charts the feed and insert times drop
sharply when the number of nodes increases from 3 to 8, while

5

Figure 5: Sensor data exploration interface

Figure 6: Faceted search

the drop is smoother from 8 to 32 nodes. This is caused by
the bandwidth limitation and the capacity of the servers host-
ing the sensor data sources. We can also observe that there is
no significant difference between the 10 and 15 tasks configu-
rations. To better understand these phenomena, we have mea-
sured the delay added by the cluster in a fetching task. The
results in Figure 10 reveal that increasing the number of tasks
can introduce more delay for each processing task. This extra
delay is produced by the overhead of scheduling and hosting the
asynchronous threads for additional tasks. However, the chart
also shows that adding more processing nodes to the cluster
reduces the delay difference between both cases. These results
may sound simple but nevertheless determine the practical scal-
ability of a deployment.

Another important observation in Figures 8 and 9 is that the

system takes less time to finish a fetching cycle than to flush
the output into the triple storage. To find out the difference be-
tween the throughputs of the fetching and inserting operations,
we have measured them separately. The results are given in
Figure 11. We can see that feed rates are much higher than
insert rates, specially when the number of nodes increases be-
yond 16. This shows that the triple storage acts as a bottleneck.
This is a common issue of triple storages, since they are not
designed for write-intensive applications. An alternative would
be to use the stream processing engine to filter and aggregate
high-update-rate data on the fly before storing them in the triple
storage, therefore reducing the number of insertions, which we
will investigate further in coming versions of LSM.

6

(a)

!"#$#%&'()*+,-$#%&'.',/+0)1''&

(b)

Figure 7: Sensor data annotation (a), and an example of a sensor data feed for a mobile device (b)

Figure 8: Feed and Insert times with 10 tasks per cluster node

Figure 9: Feed and Insert times with 15 tasks per cluster node

3.3.2. Query Execution
We have also evaluated LSM in terms of query execution

time. For continuous queries, the current version of the CQELS
engine can handle stream throughputs from 5,000 up to 20,000
triples per second. Hence, CQELS can cope with the feed
rates shown in Figure 11. The delay for delivering results is
about 0.5-200 milliseconds depending on the query complexity
and the sizes of static data involved. CQELS can also handle
thousands of concurrent queries as shown in the evaluation of
CQELS in [9].

While CQELS can cope with highly dynamic data streams,

Figure 10: Fetching delay for 10 and 15 tasks per cluster node

Figure 11: Feed and insert rates for 10 and 15 tasks per cluster node

when combining stream and static data (e.g., historical and
metadata), CQELS’s performance is naturally limited by the
query response time of the triple storage that hosts the static
input. The triple storage also dictates the amount of historical
readings that can be handled. This is outside the possible opti-

7

misations of CQELS as these are outside linked data sources.
To evaluate the query processing performance over historical

data in the LSM, we incrementally fetch weather readings from
70,000 sources and insert them into the triple storage. We repeat
this process every 30 minutes, and measure the query execution
time with the increased number of triples. While this may look
like an artificially limited scenario, it nevertheless is the most
common practical deployment scenarios in distributed sensor
web systems. We have chosen the following 5 queries, since
they represent the most popular queries over historical readings
and metadata:
• Query 1: Get the latest reading of a sensor.
• Query 2: Retrieve all the readings within a time interval.
• Query 3: Find all the sensors within an area that have a

reading in a specific value range.
• Query 4: Get the latest reading of the nearest sensor that

can measure a certain type of reading, e.g., temperature.
• Query 5: Show a reading, e.g, temperature, of a location,

e.g., “Times Square” (the name is provided by geodata
from DBpedia and LinkedGeoData).

The SPARQL representation of the queries is given in the
Appendix. As usual in database benchmarks, we first warm up
Virtuoso’s cache by running each query 20 times. After that,
we executed each query 100 times and averaged the execution
times. At each execution the constant values in the queries were
chosen randomly. We evaluated the queries everytime after 30
million new triples had been inserted in the storage (approx-
imately after 8 fetching cycles). Figure 12 shows the results
over a period of 30 hours.

Figure 12: Query execution time with the increasing number of triples

We can observe that the query execution time of all queries
increases sharply after 150 million triples, which corresponds
to approximate 37 readings per sensor source. At this point
the triple storage performs poorly and crashes often. This cre-
ates a limitation on the amount of historical readings that can
be stored. In this setup, we would collect over 190 million
triples in just one day, which would result in poor query re-
sponse times. This limitation can be slightly improved adding
more computing resources. For instance, if doubling the mem-
ory from 8GB to 16GB, this setup can handle up to 500 mil-
lion triples15. However, this solution is not applicable when the

15How many triples can a single server handle? http://virtuoso.

openlinksw.com/dataspace/dav/wiki/Main/VOSVirtuoso6FAQ

number of triples goes beyond billions, for example, historical
readings for months. Thus the amount of collecting historical
data must be monitored by the applications. The most common
strategies would be to collect no historical data which is pos-
sible in many scenarios, regularly expire such data, or dynam-
ically off-load it into a different storage not used in the online
processing.

3.4. Discussion and Lessons Learned

Scalability is the crucial feature for the targeted deployment
scenarios of LSM. Millions of sensor data sources published
via HTTP and must be supported by any infrastructure simi-
lar to LSM. For handling this huge amount of information, the
data fetching process needs to run in a reliable, scalable and
bottleneck-free infrastructure. In the presented deployment ar-
chitecture of LSM, Hadoop allows us to increase the data con-
sumption and transformation rate by simply adding more hard-
ware, which is a proven strategy in most large-scale services.
However, adapting the task scheduling to the variations on the
stream rates and server throughputs is still an open challenge.
On top that, more experiments to show how the performance of
the consumption changes in a certain setup when adding new
data sources are needed.

Besides the online data processing, it is also necessary to
store the data, either for queries defined over a time period or
for archiving purposes. We have observed that most of the triple
storages cannot efficiently handle high insertion rates. The per-
formance evaluation has shown that for just one day worth of
data, at a very slow sampling rate of 1 reading every 30 minutes
for each source, the size of the historical data could easily be in
the range of billions of triples given the current growth rate in
the number of sources. Such live systems are expected to gather
data in a much faster pace, therefore more efficient data stor-
ages are clearly needed. This is an open challenge for research
on triple storages. We are investigating how to apply the solu-
tions from Streaming Data Warehouses [14] to triple storages.
For instance, to faster insert and query over continuously update
and massive datasets, the datasets can be split into smaller parti-
tions so that the updates/expirations only affect smaller chunks
of data. Therefore, the burden of updating the indexes is lifted
to enable a much higher throughput of insert and a faster query
speed.

As an alternative to triple storages, we have tried to use re-
lational tables to store the historical data. However, this re-
quires mapping the data from relations to triples. Virtuoso pro-
vides a mapping language as well as a query rewriter that en-
ables querying relational data from SPARQL in a transparent
way, but we have encountered performance issues with more
advanced queries, because the rewritten queries were too com-
plex. Hence, better mapping languages and optimised query
rewriters are needed. Looking closely to the queries in the Ap-
pendix, the complexity of the queries on historical data comes
from classes and properties that capture sensor readings. This
raises the challenge of designing sensor ontologies that could
improve the Linked Stream Data processing. A further line of
investigation is the use of column storages.

8

4. Related Work

Traditionally, sensor data fusion applications require prior
knowledge about the sensor systems as well as knowledge
about the environment for which the system was built, which
limits considerably the development of new applications and
hinders the data integration process. Preliminary efforts to sup-
port flexible reuse of sensor data were the definition of stan-
dards such as the standards for transducers (IEEE 1451), the
Radiation Detection Standards (ANSI N42), the Open Geospa-
tial Consortium (OGC) Sensor Web Enablement [15], and
the Extended Environments Markup Language (EEML) [16].
However, most of these standards are over-simplified, and ei-
ther too general or too domain-specific, so only a few sys-
tems currently conform to them. The Sensor Web Enable-
ment has achieved a bigger impact and is used in projects
such as the 52oNorth [17] project, the NASA/JPL Sensor Webs
project [18], and the European Space Agency [19].

Advancements in sensor and network technologies enables
sensor systems to share their data. Most of the existing ap-
proaches for sensor data sharing provide simple interfaces for
publishing and retrieving data via centralised portals. Sensor-
Base16 enables the publication of sensor data via HTTP POST
and provides Web services to query sensor data from its re-
lational database. In a similar fashion, Pachube17 provides a
RESTful interface to stream live sensor data. Historical data
and live data can be retrieved via feeds in XML (EEML) or
JSON formats. Along with Web services to publish and request
historical and online sensor data, SensorMap [20] also provides
an explorer for sensor data on maps. Another approach that
uses HTTP for making sensor data accessible is [21]. It com-
bines the advantages of the Web feed and multimedia streaming
paradigms. Each sensor stream has a URL with associated pa-
rameters to query and filter historical and live data. The Global
Sensor Networks (GSN) [10] provides a zero-programming,
declarative middleware to publish sensor data directly from
physical sensors connected to a PC via interfaces like USB,
Bluetooth, UDP and TCP/IP, or from virtual sensors. Sen-
sor data is accessible through HTTP with querying parameters.
GSN supports a wide range of sensors and offers a nice de-
velopment environment with Web interfaces and visualisation
functionalities.

This increasing number of available sensors also led to a
number of projects to generate and explore sensor metadata
information. Sensor metadata is crucial for sensor source se-
lection and for the integration with other data sources. The
OGC proposed sensor and observation models based on XSD
schemas for specifying interoperability interfaces and metadata
encodings, in order to enable the online integration of heteroge-
neous sensor Webs. However, there is a gap between the syn-
tactic XSD of OCG’s Sensor Web Enablement (SWE) and the
RDF/OWL-based metadata, which is commonly used for repre-
senting domain knowledge. To bridge this gap, Sheth et al. [22]
proposed to use RDFa to annotate ontological concepts and
properties of SWE by using XLink [23]. This approach requires

16http://sensorbase.org/
17http://pachube.com/

the underlying sensor system to capture semantic data along
with the raw sensor readings, and to provide sensor stream
data management and support for some semantic functionali-
ties. While the concepts have been proposed, so far no such
system has been implemented.

Other approaches use semantic descriptions of sensor data
streams to automatically compose sensor applications and ser-
vices. Semantic Streams [7] allows users to specify queries
based on the semantics of the sensor data streams. The seman-
tics are described using Prolog-based logic rules. Due to issues
of scalability and decidability of Semantic Streams, Bouillet et
al. [5] propose to use OWL to represent the sensor data stream
and the processing elements for composing applications. How-
ever, these approaches also assume that semantic descriptions
of sensor data are already available.

SenseWeb [24] is a platform for leveraging data from avail-
able sensor data streams across the Web. It relies on sensor
metadata to help in the selecting process of appropriate sen-
sor sources for each application. As an early version of LSM,
SensorMasher [25] was the first platform for publishing sen-
sor data as Linked Data. Its mashup engine enables the user to
visually explore and combine sensor data resources in a homo-
geneous triple-based data model. SemSorGrid4Env [26] also
explores semantic annotations to support well-informed inter-
actions among heterogeneous sensor data. Similar to LSM,
it uses another Linked Data stream processing engine, called
SPARQLstream [27]. However, it mainly focus on data integra-
tion, whilst the data acquisition, performance and scalability are
not mentioned in the literature.

5. Conclusions and Further Work

Data streams add completely new functionalities to Web ap-
plications by providing up-to-date information and a link to the
physical world if a stream comprises sensor information. Pos-
sible applications range from simple information services up to
sophisticated real-time information and planning systems as in
the case of smart cities, which enable efficient decision-making
of people, public administrations, and businesses. The techni-
cal challenges are not trivial but solvable as demonstrated by
the LSM platform described in this paper. We have already
a range of approaches to address the issues of data and plat-
form heterogeneity and integrated stream processing according
to the Linked Data paradigm. If supported well, Linked Stream
Data will become as significant as Linked Data and will allow
Web technologies also to penetrate other areas such as the In-
ternet of Things and mobile applications. Some of the open
challenges are shared with other domains, for example, design-
ing triple storages optimised for writing-intensive operations.
Others, specifically on the security and privacy side are open
problems and require in-depth investigation. Global linking of
information together with real-world information bears signifi-
cant risks along with the huge innovation potential that exists.
However, this is an issue shared with any information dissemi-
nation and integration technology and will have to be addressed
comprehensively. On the Web side, the integration of sensor in-
formation and social networks also seems an interesting new
research direction: Sensors can provide valuable information
for social networks, for example, physical presence integrated

9

with virtual presence in the social network, while social net-
works and people can be used as sensors (opportunistic sensing,
citizen sensors).

Appendix A. Evaluation Queries over Historical Data�

�

�

�

Query 1

select ?s ?p ?o

where{

{

select ?x where

{?x <http://purl.oclc.org/NET/ssnx/ssn#observedBy>

<http://lsm.deri.ie/resource/8a8291b73215690e01321576ff047d51>.

?x <http://purl.oclc.org/NET/ssnx/ssn#observationResultTime> ?time.}

order by desc(?time) limit 1 }

?s <http://lsm.deri.ie/ont/lsm.owl#isObservedPropertyOf> ?x. ?s ?p ?o.}

}�

�

�

�

Query 2

select ?s ?p ?o

where{

{

select ?observation where

{ ?observation <http://purl.oclc.org/NET/ssnx/ssn#observedBy>

<http://lsm.deri.ie/resource/8a8291b73215690e01321576ff047d51>.

?observation <http://purl.oclc.org/NET/ssnx/ssn#observationResultTime> ?time.

filter(?time > "2012-01-11"^^xsd:date &&?time < "2012-01-13"^^xsd:date). }

}

?s <http://lsm.deri.ie/ont/lsm.owl#isObservedPropertyOf> ?observation. ?s ?p ?o.

}�

�

�

�

Query 3

select ?s ?value

where{

{

select ?sensorId from <http://lsm.deri.ie/metadata#>

where{

?sensorId <http://www.loa-cnr.it/ontologies/DUL.owl#hasLocation> ?p.

?p geo:geometry ?geo.

filter (<bif:st_intersects>(?geo,<bif:st_point>(-2.900....,47.5499...),5)).

}order by <bif:st_distance>(?geo,<bif:st_point>(-0.127144,51.506325))

}

?obs <http://purl.oclc.org/NET/ssnx/ssn#observedBy> ?sensorId.

?s <http://lsm.deri.ie/ont/lsm.owl#isObservedPropertyOf> ?obs.

?s rdf:type <http://lsm.deri.ie/ont/lsm.owl#WindSpeed>.

?s <http://lsm.deri.ie/ont/lsm.owl#value> ?value.

filter(?value > 15 && ?value < 20).

}�

�

�

�

Query 4

select ?temp ?value ?times

where{

{

select ?sensorId from <http://lsm.deri.ie/metadata#>

where{

?sensorId <http://www.loa-cnr.it/ontologies/DUL.owl#hasLocation> ?p.

?p geo:geometry ?geo.

filter (<bif:st_intersects>(?geo,<bif:st_point>(-2.900...,47.5499...),5)).

}order by <bif:st_distance>(?geo,<bif:st_point>(-0.127144,51.506325)) limit 1

}

?obs <http://purl.oclc.org/NET/ssnx/ssn#observedBy> ?sensorId.

?temp <http://lsm.deri.ie/ont/lsm.owl#isObservedPropertyOf> ?obs.

?temp rdf:type <http://lsm.deri.ie/ont/lsm.owl#AirTemperature>.

?temp <http://lsm.deri.ie/ont/lsm.owl#value> ?value.

?temp <http://purl.oclc.org/NET/ssnx/ssn#observationResultTime> ?time

}order by desc(?time) limit 1�

�

�

�

Query 5

select ?temp

where{

{

select ?sensorId from <http://lsm.deri.ie/metadata#>

where{

?sensorId <http://www.loa-cnr.it/ontologies/DUL.owl#hasLocation> ?p.

?p geo:geometry ?geo. ?p <http://www.geonames.org/ontology/#nearby> ?poi.

?poi rdf:label ’Time Square’. }

?obs <http://purl.oclc.org/NET/ssnx/ssn#observedBy> ?sensorId.

?temp <http://lsm.deri.ie/ont/lsm.owl#isObservedPropertyOf> ?obs.

?temp rdf:type <http://lsm.deri.ie/ont/lsm.owl#AirTemperature>.

?temp <http://lsm.deri.ie/ont/lsm.owl#value> ?value.

}

References

[1] M. Compton, P. Barnaghi, L. Bermudez, R. G. Castro, O. Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janow-
icz, W. D. Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri, H. Neuhaus,

A. Nikolov, K. Page, A. Passant, A. Sheth, K. Taylor, The SSN Ontol-
ogy of the Semantic Sensor Networks Incubator Group, Journal of Web
Semantics.

[2] D. Pfisterer, K. Römer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kröller, M. Pagel, M. Hauswirth, M. Karnstedt, M. Leg-
gieri, A. Passant, R. Richardson, Spitfire: toward a semantic web of
things, IEEE Communications Magazine 49 (11) (2011) 40–48.

[3] C. Bizer, T. Heath, T. Berners-Lee, Linked Data - The Story So Far, Inter-
national Journal on Semantic Web and Information Systems 5 (3) (2009)
1–22.

[4] J. F. Sequeda, O. Corcho, Linked stream data: A position paper, in: SSN
Workshop, 2009.

[5] E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov, F. Ye, A
semantics-based middleware for utilizing heterogeneous sensor networks,
in: DCOSS, 2007, pp. 174–188.

[6] A. P. Sheth, C. A. Henson, S. S. Sahoo, Semantic Sensor Web, IEEE
Internet Computing 12 (4) (2008) 78–83.

[7] K. Whitehouse, F. Zhao, J. Liu, Semantic Streams: A Framework for
Composable Semantic Interpretation of Sensor Data, in: EWSN, 2006,
pp. 5–20.

[8] M. Leggieri, A. Passant, M. Hauswirth, inContext-Sensing: LOD aug-
mented sensor data, in: ISWC (Posters and Demos), 2011.

[9] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, M. Hauswirth, A native and
adaptive approach for unified processing of linked streams and linked
data, in: ISWC, 2011, pp. 370–388.

[10] K. Aberer, M. Hauswirth, A. Salehi, Infrastructure for data processing
in large-scale interconnected sensor networks, in: MDM, 2007, pp. 198–
205.

[11] T. Heath, C. Bizer, Linked Data: Evolving the Web into a Global Data
Space, 1st Edition, Morgan & Claypool, 2011.

[12] D. Le-Phuoc, A. Polleres, M. Hauswirth, G. Tummarello, C. Morbidoni,
Rapid prototyping of semantic mash-ups through semantic web pipes, in:
WWW, 2009, pp. 581–590.

[13] M. Balazinska, A. Deshpande, M. Franklin, P. Gibbons, J. Gray, S. Nath,
M. Hansen, M. Liebhold, A. Szalay, V. Tao, Data management in the
worldwide sensor web, Pervasive Computing, IEEE 6 (2) (2007) 30 –40.

[14] L. Golab, M. T. Özsu, Data stream management, Synthesis Lectures on
Data Managemen (2010) 1–73.

[15] Sensor web enablement dwg, http://www.opengeospatial.org/
projects/groups/sensorweb.

[16] Extended environments markup language, http://www.eeml.org.
[17] 52onorth, http://52north.org.
[18] Nasa/jpl sensor webs project, http://sensorwebs.jpl.nasa.gov.
[19] European space agency, http://www.esa.int/esaCP/index.html.
[20] S. Nath, J. Liu, F. Zhao, Sensormap for wide-area sensor webs, IEEE

Computer 40 (7) (2008) 90–93.
[21] R. F. Dickerson, J. Lu, J. Lu, K. Whitehouse, Stream feeds - an abstraction

for the world wide sensor web, in: IOT, 2008, pp. 360–375.
[22] A. Sheth, C. Henson, S. S. Sahoo, Semantic sensor web, IEEE Internet

Computing 12 (2008) 78–83.
[23] Xml linking language, http://www.w3.org/TR/xlink/.
[24] A. Kansal, S. Nath, J. Liu, F. Zhao, Senseweb: An infrastructure for

shared sensing, IEEE MultiMedia 14 (2007) 8–13.
[25] D. Le Phuoc, Sensormasher: publishing and building mashup of sensor

data, in: Triplification Challenge, I-Semantics’09, 2009.
[26] A. J. G. Gray, R. Garcı́a-Castro, K. Kyzirakos, M. Karpathiotakis, J.-P.

Calbimonte, K. Page, J. Sadler, A. Frazer, I. Galpin, A. A. A. Fernan-
des, N. W. Paton, O. Corcho, M. Koubarakis, D. De Roure, K. Mar-
tinez, A. Gómez-Pérez, A semantically enabled service architecture for
mashups over streaming and stored data, in: ESWC, 2011, pp. 300–314.

[27] J. P. Calbimonte, O. Corcho, A. J. G. Gray, Enabling ontology-based ac-
cess to streaming data sources, in: ISWC’10, pp. 96–111.

10

