
A Secure Execution Framework for Java�

Manfred Hauswirth
Distributed Systems Group

Technical University of Vienna,
Austria

mh@infosys.tuwien.ac.at

Clemens Kerer
Distributed Systems Group

Technical University of Vienna,
Austria

ck@infosys.tuwien.ac.at

Roman Kurmanowytsch
Distributed Systems Group

Technical University of Vienna,
Austria

q@infosys.tuwien.ac.at

ABSTRACT
The Java platform facilitates to dynamically load and exe�
cute code from remote sources which can threaten the secu�
rity and integrity of a system and the privacy of its users�
To address these problems� Java includes a security archi�
tecture which is based on a closed policy model� Although
this model is su�cient to specify arbitrary policies� it eas�
ily may become cumbersome to use and is not well�suited
for administering a consistent security policy for a complete
network� The Java Secure Execution Framework �JSEF�
overcomes these drawbacks� it introduces higher�level ab�
stractions which enhance the expressiveness of policy rules�
it simpli	es the maintenance of security con	gurations� and
it provides additional functionality and tools to make ad�
ministration less error�prone� In JSEF we propose a hybrid
policy model which supports additive and subtractive per�
missions with a denial�take�precedence rule to resolve con�

icts� Security pro	les can be expressed in terms of hierar�
chical groups where a subgroup inherits the policy de	ned
by its parent� All members of a group share the same set of
permissions and users can be members of an arbitrary num�
ber of groups� JSEF�s administrative model supports the
de	nition of a network�wide policy which users can tailor to
their needs but not break� At runtime JSEF enforces the
de	ned security policy and supports security negotiation in
case of insu�cient permissions� A set of graphical tools sup�
ports the user in de	ning security policies and con	guring
JSEF�

Categories and Subject Descriptors
D�� Operating Systems�� Security and Protection�Java�
management� con�guration� D���� Security and Protec�
tion�� Access Controls�Java� mobile code security and ac�
cess� K�� Management of Computing and Informa�
tion Systems�� Security and Protection�Java� manage�

�This work was supported in part by the European Com�
mission under contract IST����������� �OPELIX��

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS ’00,Athens, Greece.
Copyright 2000 ACM 1-58113-203-4/00/0011 ..�5.00

ment� con�guration� K���� Security and Protection��
Unauthorized Access�Java� mobile code security and ac�
cess

General Terms
Security� Management

Keywords
Java security management� XML�based security con	gura�
tion� management GUIs

1. INTRODUCTION
Mobile code denotes code that traverses a network and ex�

ecutes at a remote site� The process of traversing can either
be active as in the case of mobile agents which move around
in a network at their own volition� or it can be passive� i�e��
a user downloads the code to a site and executes it there
�e�g�� applets��
Java can be used as a platform for both types of code

mobility and in conjunction with the Internet opens new
possibilities for software development� software deployment�
and architectural styles� The downside is that it also opens
new security threats� For example� downloaded code can
include a virus or be a Trojan horse and thus pervert the
concept of code mobility over the Internet in a very danger�
ous way ��portable viruses��� As any mobile code platform
Java su�ers from four basic categories of potential security
threats �� �� ��� ��� ���� ��� leakage �unauthorized attempts
to obtain information belonging to or intended for some�
one else�� ��� tampering �unauthorized changing�including
deleting�of information�� ��� resource stealing �unautho�
rized use of resources or facilities such as memory or disk
space�� and ��� antagonism �interactions not resulting in a
gain for the intruder but annoying for the attacked party��
To deal with these threats Java provides a special run�

time environment that tries to protect users from erroneous
or malicious mobile code and tries to ensure the integrity�
security� and privacy of the user�s system� It provides good
protection against leakage and tampering but resource steal�
ing and antagonism cannot be fully prevented since it is hard
to distinguish automatically between legitimate and mali�
cious actions�
Java�s security architecture o�ers many low�level security

mechanisms� e�g�� access permissions on resources� and sup�
ports the de	nition of arbitrary security constraints� but
provides no higher�level security management concepts such
as hierarchical policies or user groups� It does not support




exible system�wide security policies and o�ers no concepts
for de	ning security pro	les� No notions of users and groups
exist and it provides only very limited means for hierarchi�
cally organized security con	gurations� The lack of such
higher�level concepts complicates maintenance of a consis�
tent security policy for a complete network and tailoring of
security requirements to the needs of a speci	c user and thus
may cause miscon	gurations or the introduction of security
holes�
This paper presents the Java Secure Execution Framework

�JSEF� which solves these shortcomings� JSEF �pronounced
Joseph� provides a hierarchical security policy scheme which
supports both local� user�speci	c security policies� and a
global security policy de	ned by the administrator� It sup�
ports the de	nition of user groups with assigned security
policies which can be freely structured into a hierarchy� A
user can be member of a set of groups with di�erent se�
curity pro	les which aids administrators in the de	nition�
assignment� and maintenance of security policies for a user
or a group of users� JSEF o�ers several additional features
beyond Java�s standard capabilities� Policy and group de	�
nitions are represented as XML documents� policies� con	g�
urations� and mobile code can be retrieved from arbitrary
locations� and security con
icts can be negotiated inter�
actively at runtime� JSEF is based on the Java � secu�
rity architecture and is fully compatible with it� It can be
used with any Java code and in any environment which is
compatible with Java �� for example� in Java�based mobile
agent systems or for extended applet security features in
Web browsers� JSEF originally was developed as part of the
Minstrel push system project �� to provide a 
exible secu�
rity environment for executable channel content �so�called
pushlets� and agents ���
This paper is organized as follows� Section � provides an

overview of Java�s security model� This model is discussed
in Section � and we point out its shortcomings which pro�
vided the motivation and requirements for JSEF� Section �
then presents JSEF�s security model and concepts� Some
key parts of JSEF�s implementation are highlighted in Sec�
tion � and we overview the main tools developed for JSEF
which o�er easy�to�use access� con	guration� and manage�
ment functionalities for users and administrators� Section �
presents work related to JSEF and we summarize and give
our conclusions in Section �� JSEF and all associated tools
are available at http���www�infosys�tuwien�ac�at�jsef��

2. JAVA’S SECURITY ARCHITECTURE
According to ��� four practical techniques for securing

mobile code exist� the sandbox model� code signing� 	re�
walling� and proof�carrying code� Java uses a hybrid ap�
proach which combines sandboxes and code signatures� The
Java core classes act as a security shield and enforce the
sandbox model by granting or forbidding access to resources
based on a security policy� The rules speci	ed in the security
policy de	ne the actions a piece of code is allowed to per�
form depending on the origin of the code and an optional
signature� Not all of Java�s powerful security mechanisms
are in place per default when launching the Java Virtual
Machine �JVM�� While some basic checks are performed au�
tomatically� the more sophisticated concepts including the
sandbox model have to be put into action manually �� �in
the following sections we assume that this has been done��
When a class is loaded the following steps occur� First�

the Veri	er ��� performs a set of security checks to guaran�
tee properties such as the correct class 	le format� correct
parameter types and binary compatibility before a class is
loaded� These checks enhance runtime performance because
otherwise they would have to be performed during runtime�
Also� they assure the integrity of the Java runtime environ�
ment since no malformed class can be loaded� Having passed
the Veri	er the class loader loads the bytecode representa�
tion of the class and checks optional signatures� Further�
more� the class�s code source is constructed which consists
of the location from which the class was obtained and a set
of certi	cates representing the signature�
The class�s code source is the key input for the security

policy construction for a given class� In Java � the security
policy is de	ned in terms of protection domains which de	ne
what a piece of code with a given code source is allowed to
do� Hence� a protection domain contains a code source with
a set of associated permissions� Given the code source of
a class� the security policy �i�e�� a collection of protection
domains� is searched to compose the permissions of the class�
Finally� the class is being de	ned� De	ning a class makes

it publicly available and adds it to the class loader�s cache of
classes which is important to ensure class uniqueness� Java
considers two classes equal if� and only if� they have the
same name and were loaded by the same class loader�
After these initial steps the class can be used in the Java

runtime environment� However� every time the class tries to
access a system resource its permissions have to be checked
by contacting the security manager� If the call to the secu�
rity manager returns silently� the requesting caller has suf�
	cient permissions to access the resource and the execution
continues� If not� a security exception is raised and has to
be handled by the caller or otherwise the JVM terminates�
The remaining question is� how the security manager de�

cides whether access to a resource is granted� Since Java
� the security manager is mainly included for compatibility
reasons and delegates nearly all of its tasks to the access
controller� The access controller uses a stack inspection al�
gorithm and the security policy to decide how to proceed�
The stack inspection algorithm is based on the call stack of
the current method� Since every class was assigned an ap�
propriate set of permissions when it was loaded� the stack
inspection algorithm can use this information to make its
decision� An in�depth discussion of Java�s stack inspection
algorithm is beyond the scope of this paper� A detailed
description of Java�s security architecture and the stack in�
spection algorithm can be found in ����

3. A CRITICAL VIEW ON JAVA’S SECU-
RITY MODEL

Java�s current security model only supports explicit spec�
i	cation of accesses that are permitted� This is su�cient to
specify arbitrary security policies but may be impractical�
however� if a user needs an advanced security policy� Instead
of specifying what is permitted� it is frequently necessary to
specify what is not permitted� For example� a directory hi�
erarchy may hold con	guration 	les which may only be read
and data 	les which may also be modi	ed� If the number
of 	les and directories is high� it may be cumbersome to ex�
plicitly list all 	les and directories which may be accessed
with the according permissions and maintenance of this dec�
larations can become di�cult� It may be considerably easier



to assign read�write permissions to the whole directory tree
and only forbid write access for certain 	les� Of course this
depends on the concrete requirements but having such a
feature at hand leaves the decision to the user which way of
con	guration 	ts best his�her needs� JSEF supports both
ways of speci	cation by its so�called additive and subtractive
permissions�
The current security model of Java uses a two�level con�

	guration approach� A global policy 	le holds the default
permissions for any user on a speci	c site and a user�s local
policy 	le can specify additional permissions� Since Java�s
security model only supports additive policies� only two ex�
tremes for meaningful security con	guration exist� Either
each user must maintain a private security policy 	le� or a
global policy is speci	ed and user�speci	c con	gurations are
ignored� With the 	rst strategy users can easily introduce
security holes�regardless of whether a global policy 	le ex�
ists since the user�s local policy can extend the global policy
in any way�but can have a personalized con	guration� In
the second case the administrator has total control over the
security policy but cannot tailor it to speci	c users� needs�
JSEF overcomes these problems by providing a hierarchi�

cal security policy scheme which supports both local� user�
speci	c security policies and a global security policy de	ned
by the administrator which takes precedence over user poli�
cies� At runtime a user�s actual policy is de	ned by merging
the user�s local policy with the global policy� The user�s pol�
icy� however� cannot circumvent restrictions imposed by the
administrator in the global policy� This scheme attempts
to improve the management of security policies and will be
explained in detail in Section �� For example� the system
administrator may de	ne the company�wide security policy
in the global policy and JSEF ensures that every user im�
plicitly follows it� However� users can still re	ne this policy�
e�g�� by de	ning a more restrictive policy for their personal
data� but cannot overrule it�
Moreover� the Java security model lacks support for user

groups while JSEF supports the de	nition of hierarchical
user groups with assigned security policies� A user can be
member of several groups that have di�erent security pro�
	les� With user groups being supported� an administrator
can easily de	ne a set of pro	les in terms of groups and as�
sign these pro	les to users depending on their requirements�
Additionally� these groups can be freely structured into a
hierarchy to simplify maintenance and tailoring of the se�
curity policy� Thus policies for the speci	c user roles can
be easily de	ned� nested� and maintained� For example� de�
velopers may be assigned a certain pro	le� a subgroup for
testers may inherit these permissions but be refrained from
modifying the source 	les�
In contrast to Java� JSEF supports the retrieval of policy

de	nitions from arbitrary sources� It currently uses 	les
�which hold the necessary de	nitions represented in XML��
but can easily be tailored to load the policy de	nitions from
other sources such as databases or remote locations� For
example� a company may want to keep these de	nitions in a
database on a secure computer which can only be accessed
via a special security procedure� Also mobile code that is to
be executed can be loaded from arbitrary sources�
In the standard Java security model the requester of an

operation receives a security exception whenever an access
is denied by the user�s security policy� This typically termi�
nates the execution� the user has to exit the program that

wanted to perform the access� set the appropriate permis�
sions� restart the program� and retry its execution� This
can be tedious and time�consuming especially for applets
and mobile agents� For example� a user downloads an ap�
plet and the applet wants to access a resource the user does
not permit access to yet� Then the user would have to ad�
just the permissions and reload the applet �possibly again
over the network� and restart it� This process has to be
repeated for every denied access until all required permis�
sions are available since the applet fails as soon as it en�
counters such a problem� The required permissions cannot
be determined during download or veri	cation time because
the security requirements of a Java program depend on its
dynamic runtime behavior� Additionally� no formal correct�
ness proof of the Java veri	er exists so far� JSEF provides
a security negotiation facility� If a forbidden operation is
attempted� JSEF intercepts it before the actual access and
starts a negotiation process which can also be used as a
blueprint for other �semi�� automatic negotiation schemes�
This supports runtime management of the security policy
while still ensuring that the existing policy settings are not
violated� To circumvent these runtime security negotiations
users may permit all accesses� but this problem also applies
to the standard security architecture� It is even more likely
to occur there since it requires more e�ort than with JSEF
to adjust permissions correctly�

4. THE JSEF MODEL
One of the main goals of JSEF�s security model is to re�

main compatible with the default Java security model �� ��
�� ���� As a consequence� JSEF�s policy concepts extend the
loading� execution� and monitoring of a class as described in
this section� In�depth descriptions of the JSEF policy con�
cepts are given in ��� and ����
For the further discussion of JSEF�s main features con�

sider the following example scenario� a user called Charly
Brown is working on a computer in a local area network
managed by a system administrator� He has just down�
loaded a demo version of a promising new Java program from
www�infosys�tuwien�ac�at and wants to execute it� For secu�
rity reasons the system administrator has installed JSEF on
all machines in the network� Based on this scenario the fol�
lowing sections present the concepts underlying JSEF and�
	nally� compare the behavior of Java and JSEF�

4.1 Additive and Subtractive Policy
JSEF introduces the notions of additive and subtractive

permissions� Additive permissions are the class of permis�
sions as used by the Java security model� They grant per�
mission to access a resource� Subtractive permissions are
de	ned in a similar way but specify which resources must
not be accessed� As with additive permissions� subtractive
permissions are grouped in �subtractive� protection domains
to associate a code source with a set of permissions� The
collection of additive protection domains de	nes the user�s
additive security policy and the collection of subtractive pro�
tection domains de	nes his�her subtractive security policy�
Figure � shows the additive and subtractive policy de	ni�

tion of the user Charly Brown� Since Charly Brown trusts
code originating from www�infosys�tuwien�ac�at if it is signed
by CK� he de	nes an additive protection domain granting
all permissions to such code� Notwithstanding his trust�
Charly Brown wants to make sure that his personal data



remains untouched� Thus he de	nes a negative policy item
preventing such code from accessing his home directory�

��xml version��������
�	DOCTYPE localPolicy SYSTEM �localPolicy�dtd��
�localPolicy userName��Charly Brown� lastChanged����
��
������
�addItems�
�policyItem signedBy��CK�

codeBase��http

www�infosys�tuwien�ac�at
���
�permission class��java�security�AllPermission��
�
permission�

�
policyItem�
�
addItems�
�subItems�
�policyItem signedBy��CK�

codeBase��http

www�infosys�tuwien�ac�at
���
�permission class��java�io�FilePermission��
�permissionName name��
home
��
�
�actions name��read write execute�
�

�
permission�
�
policyItem�

�
subItems�
�
localPolicy�

Figure �� Charly Brown�s additive and subtractive
policy de�nition�

This example already indicates that negative permissions
overrule additive ones� A complete description of JSEF�s
policy semantics is given in Section ��� after all concepts
have been presented�

4.2 Policy Exceptions
Policy Exceptions are another extension to Java�s security

architecture which is applied in conjunction with the wild�
cards ��� and ��� of Java�s policy model� Wildcards make
it easy to de	ne a permission to access a set of resources
but the Java policy model lacks a possibility to also express
an except�for semantics� For example� if a permission is to
be granted to all 	les in a directory except for few� all �po�
tentially numerous� other 	les would have to be explicitly
listed in the additive permissions� Policy exceptions solve
this� For example� policy exceptions allow Charly Brown to
grant all permissions for all resources but prohibit access to
his home directory �see Figure ���

��xml version��������
�	DOCTYPE localPolicy SYSTEM �localPolicy�dtd��
�localPolicy userName��Charly Brown� lastChanged����
��
������
�addItems�
�policyItem signedBy��CK�

codeBase��http

www�infosys�tuwien�ac�at
���
�permission class��java�security�AllPermission��
�
permission�

�
policyItem�
�policyException signedBy��CK�

codeBase��http

www�infosys�tuwien�ac�at
���
�permission class��java�io�FilePermission��
�permissionName name��
home
��
�
�actions name��read write execute�
�

�
permission�
�
policyItem�

�
addItems�
�
localPolicy�

Figure �� Charly Brown�s policy de�nition using a
policy exception�

As Figure � and Figure � indicate� the same semantics can
be achieved with either subtractive permissions or policy ex�
ceptions� The question whether both concepts are necessary

is discussed in the next section�

4.3 Global and Local Policies
As already mentioned in Section �� Java neither supports

the concept of groups nor the enforcement of system�wide
security settings� To overcome this drawback the policy con�
cept of JSEF distinguishes between a global policy �e�g�� de�
	ned by the network�s security administrator� and a local
policy �de	ned by the user� which both can hold additive
and subtractive permissions and policy exceptions� A user�s
local policy settings are under full control of the user and al�
low a user to de	ne whatever privileges or restrictions he�she
wants� All examples presented so far have been taken from
Charly Brown�s local policy settings� In our example sce�
nario� however� the network is managed by a system admin�
istrator who is interested in enforcing a system�wide secu�
rity policy�the global policy� The global policy is de	ned
as a hierarchical structure of groups� JSEF distinguishes
between an additive and a subtractive hierarchy of groups�
In an additive hierarchy� permissions are broadened along
the inheritance tree� whereas in subtractive hierarchies the
restrictions increase along the inheritance hierarchy� Global
additive permissions represent a default set of permissions
for the members of groups �e�g�� the permissions required
to make a company�s applications work� which can be fur�
ther adapted by the users� This idea is comparable to the
umask concept for setting default 	le access permissions in
the UNIX operating system which can also be adapted by
the users� Global subtractive permissions� on the other
hand� represent global restrictions which are enforced au�
tomatically and cannot be circumvented by the users �e�g��
network�wide security settings�� Permissions are either as�
signed directly to groups or inherited from a group�s parent
group� Inheriting in this context means to collect all the
permissions and restrictions of all parent groups� For exam�
ple� Charly Brown can be member of an arbitrary number
of such groups and is granted all the permissions de	ned in
them� Figure � shows the de	nition of a subtractive global
policy hierarchy and de	nes negative permissions for the
Admin� Developer� and User groups�
Having introduced the notion of a global subtractive pol�

icy the question of whether both policy exceptions and sub�
tractive permissions are necessary to achieve an except�for
semantics can be answered� When using a global subtractive
permission to forbid an action� the user can never overrule
this� Using a global policy exception� on the other hand�
would give the user the possibility to grant the excluded
permission locally� Thus although the same semantics can
be achieved� the di�erence lies in the fact whether the user
is allowed to grant the excluded permission locally or not�
Local policy exceptions do not di�er considerably from local
subtractive permissions� the main bene	t is to de	ne di�er�
ent qualities of excluded permissions for a semi�automatic
negotiation component �see Section �����

4.4 Policy Semantics
To formally describe the semantics of JSEF�s policy con�

cepts� a slightly modi	ed version of the Authorization Spec�
i�cation Language �ASL� ��� is used� ASL is a logical lan�
guage to de	ne access control policies and supports the def�
inition of users� groups� authorizations� and the policy ac�
cording to which access control decisions are to be made� In
contrast to ASL�s original speci	cation� we have no notion



��xml version��������
�	DOCTYPE globalPolicy SYSTEM �globalPolicy�dtd��
�globalPolicy lastChanged����
��
����� changedBy��sysadmin��
�group groupName��Admin��
�
group�
�group groupName��Developer� parentGroup��Admin��

�policyItem�
�permission class��java�io�FilePermission��
�permissionName name��
system
��
�
�actions name��read write execute delete�
�

�
permission�
�
policyItem�

�
group�
�group groupName��User� parentGroup��Developer��
�policyItem�

�permission class��java�net�SocketPermission��
�permissionName name���� 
�
�actions name��accept connect listen resolve�
�

�
permission�
�
policyItem�
�policyException�

�permission class��java�net�SocketPermission��
�permissionName name��www�sun�com����� 
�
�actions name��accept connect listen resolve�
�

�
permission�
�
policyException�

�
group�
�
globalPolicy�

Figure �� Subtractive global policy for the Admin	
Developer	 and User groups�

of roles since in JSEF authorizations cannot be activated or
deactivated during runtime and we add the code source of
a class as new criterion� In the following o is used for an
object a given permission applies to� a for an action to be
performed on an object� c for the code source of the execut�
ing code� and s for a subject requesting a permission� Sub�
jects can either be users �u� or groups �g�� if a rule applies
to both users and groups s is used� Hence� a permission is
represented as a ��tupel �s�c�o�a� of a subject� a code source�
an object and an action� In the following rules all literals
Li �i�e�� positive and negative predicates� on the right�hand
side must evaluate to true to yield the left�hand side of the
rule� The in�s�� s�� literal used in the following de	nitions
de	nes that subject s� is a member of subject �i�e�� group�
s��
The modi	ed cando� except� dercando� and do literals are

de	ned as follows �based on �����
A cando rule de	nes the permissions for a subject �either

a user or a group� and a code source� The following rule
de	nes that a subject s has a positive ��� or negative ���
permission for a code source c to perform action a on object
o if the right�hand side evaluates to true�

cando�s� c� o� � �j� � a� � L��L�� � � ��Ln

An except rule de	nes the policy exceptions for a subject
�either a user or a group� and a code source� The follow�
ing rule for a subject s and a code source c de	nes a pol�
icy exception which excludes a positive ��� or negative ���
permission for action a on object o from the policy if the
right�hand side evaluates to true�

except�s� c� o� � �j� � a� � L��L�� � � ��Ln

A dercando �derived cando� rule de	nes how a subject
inherits permissions from another subject for a given code
source� A subject s inherits a positive ��� or negative ���
permission to perform action a on object o for code source
c if the right�hand side evaluates to true�

dercando�s� c� o� � �j� � a� � L��L�� � � ��Ln

A do rule de	nes which permissions of a subject and a
code source are applied by resolving potential con
icts� The
following rule de	nes that a subject s is granted a positive
��� or negative ��� permission to perform action a on object
o for a code source c if the right�hand side evaluates to true�

do�s� c� o� � �j� � a� � L��L�� � � ��Ln

4.4.1 Definition of Permissions and Exceptions
In JSEF permissions and exceptions do not depend on any

conditions but are directly assigned to subjects as de	ned
by the following two rules�

cando�s� c� o� � �j� � a� � �
except�s� c� o� � �j� � a� � �

For example� in Figure � an additive permission and an
exception are de	ned in the local policy� These de	nitions
can be directly mapped onto cando and except rules by
inserting the values given in the 	gure into the above rules�

4.4.2 Derivation of Permissions
Derivation of permissions in JSEF is de	ned as follows�

dercando�s� c� o� a� � cando�s� c� o� a��
�except�s� c� o� a�

dercando�u� c� o� a� � dercando�g� c� o� a��in�u� g�
dercando�g�� c� o� a� � dercando�g�� c� o� a��in�g�� g��

The 	rst rule speci	es the derivation of a permission from
the set of speci	ed permissions and exceptions� A permis�
sion �s�c�o�a� can only be derived if the permission is de	ned
and no policy exception nulli	es the permission� In Figure �
for example� the permission to access the home directory is
nulli	ed by a corresponding policy exception� The second
rule states that a user u has to be member of group g to
derive a permission from the group� Finally� the third rule
says that groups in the group hierarchy inherit the permis�
sions of their parent groups� Figure �� for example� de	nes
that the User group is a subgroup of the Developer group
and� thus� inherits all its permissions�

4.4.3 Conflict Resolution
The following rules describe how JSEF resolves con
icts in

the case of con
icting additive and subtractive permissions
or if no permission can be derived�

do�s�� c� o��a� � dercando�s�� c� o��a��in�s�� s��
do�s�� c� o��a� � dercando�s�� c� o��a��

in�s�� s�����dercando�s�� c� o��a��
in�s�� s���

do�s�� c� o��a� � �dercando�s�� c� o��a��in�s�� s��

The 	rst rule states that denials take precedence� If a
subtractive permission can be derived� it is enforced� This
means that if a subtractive permission is de	ned either in
the global or the local policy� the action is forbidden� If the
system administrator forbids an action in the global policy�
no user can override this setting by a local policy entry �en�
forcement of system�wide restrictions�� The second rule says
that an additive permission is to be granted if and only if



the additive permission and no subtractive permission can
be derived� This means that a user can apply a locally
de	ned additive permission only if no corresponding sub�
tractive permission is de	ned� On the other hand� a system
administrator can globally grant a permission by de	ning it
in the global policy� Still the user can overrule this global
additive permission with a local subtractive one� Finally� it
can occur that neither an additive nor a subtractive permis�
sion can be derived� In this case the third rule de	nes the
default decision which does not grant the permission�
Having formally de	ned the semantics of JSEF�s policy

de	nitions� the bene	t of having both subtractive permis�
sions �see Section ���� and policy exceptions �see Section ����
becomes clear� Excluding privileges using policy exceptions
in a global policy de	nition allows users to individually grant
the excluded settings� a globally forbidden action� however�
cannot be overruled by the user�

4.5 Interactive Policy Negotiation
Once a user�s policy has been constructed by merging the

local and global policy settings� a class can be executed�
Since JSEF includes concepts that extend the standard Java
security policy� a specialized JSEF security manager is used
to monitor a class during runtime� As mentioned in Sec�
tion �� a security violation in Java�s security model normally
results in an abnormal termination of the Java virtual ma�
chine� If this occurs� a user would have to manually adapt
his�her security settings and restart the application� This
has to be repeated until all permissions required by an ap�
plication have been granted� In JSEF an �interactive� policy
negotiation component can take care of this� A security vio�
lation in the context of JSEF is due to one of three reasons�
access to a resource was ��� forbidden by a global policy
setting� ��� forbidden by a local policy setting� or ��� not
forbidden but neither granted by a global nor by a local
setting �default decision�� In the 	rst case a user cannot
overrule the security decision since system�wide� subtractive
settings cannot be in
uenced by the user� If� however� access
to a resource is forbidden locally or merely the appropriate
additive permission is not present in the policy settings� pol�
icy negotiation is started� The user can dynamically update
the policy settings� for example grant missing permissions
or adapt the policy exceptions to make the execution of a
locally forbidden action possible� A change in the policy
means that according changes must be applied to all classes
on the call stack which currently do not allow the requested
action� Furthermore� the user can decide whether the policy
adaption shall apply only once� during the runtime of the
application� or shall be permanently added to the user�s pol�
icy settings� In terms of the language semantics presented
in Section ��� two situations have to be distinguished� If
the user adds a missing permission� the appropriate cando
rule for an additive action is added to the user�s policy� If a
locally forbidden action is allowed� the cando rule with the
corresponding subtractive action has to be removed or�in
case wildcards are used in the subtractive permission�a new
except rule has to be added�
Although the current implementation of JSEF questions

the user how to proceed� any other decision making process
could be used instead� e�g�� automatically deny all requests
to emulate Java�s default behavior in the case of missing
permissions�
The advantages of this concept are that an application

need not be aborted due to missing permissions and the au�
tomatic policy update frees the user from manually adapting
the policy settings�

4.6 Java vs. JSEF in a simple Scenario
Considering the scenario presented at the beginning of

this section� the Java security model allows an application
to be started and access all resources� To prevent this� user
Charly Brown can launch the application with a security
manger installed� It will abort the application when the 	rst
access to a resource is attempted which was not explicitly
permitted� Charly Brown then would have to manually add
the requested permission to his policy 	le and restart the
application� This tedious task has to be repeated until all
required permissions have been added to Charly Brown�s
policy de	nition�
Using JSEF instead would enhance system security since

any application immediately would be subject to security re�
strictions� Additionally� JSEF would support Charly Brown
in adapting his policy settings� Thus� the demo application
must only be started once and whenever a security violation
occurs Charly Brown can decide how to proceed by clicking
a button� Furthermore� a system�wide security policy could
be enforced in which system administrators could protect
the most vital resources against undesired accesses�

5. JSEF IMPLEMENTATION AND TOOLS
JSEF is fully implemented and available under the terms

of the GNUGeneral Public License from http���www�infosys�
tuwien�ac�at�jsef� where also exhaustive documentation can
be found� The implementation consists of the complete
JSEF runtime environment and a set of graphical tools as
described in Section ��� to support operation and mainte�
nance of JSEF �including a context sensitive help facility��

5.1 JSEF – Java Integration
In Java�s default security architecture every attempt to

access a system resource results in a call to a check method
of the security manager which relays the decision to the ac�
cess controller �see Section ��� Since JSEF extends the Java
security model� the process of handling access requests had
to be extended as shown in Figure � �a detailed description
is given in �����
Whenever a check method of JSEF�s security manager is

invoked by any of the Java core classes� it asks Java�s access
controller to check the appropriate permission� If the access
controller 	nds a class on the stack which is not granted
the appropriate permission� an access control exception is
raised to the JSEF security manager which in turn starts the
interactive policy negotiation �see Section ���� if the denial is
not caused by a global subtractive permission which cannot
be overruled�
The key issue in JSEF�s security model implementation

is how the access controller applies JSEF�s enhanced policy
semantics in the stack inspection algorithm� As depicted
in Figure �� the access controller queries the protection do�
mains of all classes on the call stack whether they grant the
requested access� This means that the permission collec�
tion stored in the protection domain of the class is checked
whether it implies the requested permission� In the case of
JSEF this is a specialized JSEFPermissionCollection ob�
ject that knows how to deal with JSEF�s policy concepts�
This permission collection object is associated with the pro�



checkXXX()

[user denies]
Exception

global policy]
Exception

[denied by

[implies() = false]
AccessControlException

checkPermission()

JSEFSecurityManager AccessController

implies(permission)

*[for all acesses denied by local policy]
askUser()

Object on Stack

on the Stack]
getProtectionDomain()

*[for all objects

ProtectionDomain JSEFPolicy

Figure 
� Processing of an access request in JSEF �UML sequence diagram�

tection domain of the class when the class is being de	ned
by a special JSEF class loader� Figure � shows the ex�
tended implies method of the JSEFPermissionCollection

class� Its task is to decide whether a requested permission
is included in the set of permissions stored in its protec�
tion domain based on the policy semantics introduced in
Section ����

public boolean implies�Permission p� �
if ��p is globally forbidden� ��

�p is NOT contained in a global subtractive exception�� �
return false� 

 globally forbidden

�
if ��p is locally forbidden� ��

�p is NOT contained in a local subtractive exception�� �
return false� 

 locally forbidden

�
if ��p is globally allowed� ��

�p is NOT contained in global additive exception�� �
return true� 

 globally allowed

�
if ��p is locally allowed� ��

�p is NOT contained in local additive exception�� �
return true� 

 locally allowed

�


 neither forbidden nor allowed means not allowed	
return false�

�

Figure � The extended implies method of the
JSEFPermissionCollection class

Every JSEFPermissionCollection objects stores a set of
global additive� global subtractive� local additive� and local
subtractive permissions� Thus� the implies method has to
check each of these four sets to determine whether a given
permission is implied according to the policy rules in Sec�
tion ����
One major constraint concerns the interactive policy ne�

gotiation� Java�s stack inspection algorithm has a special
feature called privileged mode� This mode allows classes on
the stack to execute according to their permissions with�
out being restricted by less privileged classes �see ��� for a
detailed description�� Since JSEF cannot 	gure out which
classes on the stack run in privileged mode �the necessary in�
formation is private to the AccessController class and can�
not be accessed without modi	cations of the JVM�� missing
privileges are added to all classes on the stack instead of only
those called by a privileged class� Thus� permissions are po�
tentially granted to more classes than absolutely necessary�

Since in the process of policy negotiation the current pol�
icy is only weakened but never made more restrictive� this
problem applies only to additive permissions and policy ex�
ceptions as discussed in the description of the semantics of
the policy negotiation process above�

5.2 JSEF Tools
JSEF o�ers three graphical tools to manage security poli�

cies and its con	guration and operation� the Policy Tool� the
Secure Application Launcher� and the Con�guration Tool�
All tools include a context�sensitive help facility based on
JavaHelp�
The Policy Tool shown in Figure � can manage all pol�

icy related settings such as the de	nition of group policies�
local and global policy settings� and nicknames �nicknames
allow the user to assign simple string names to Distinguished
Names which are used to identify certi	cates but are hard
to remember��

Figure �� JSEF�s Policy Tool

It provides comfortable ways to edit the policy settings�
context menus� and support for copy and paste of policy sub�
trees and the contained settings� Figure � shows an example
view of a global subtractive policy con	guration including
the hierarchy of user groups� the permissions� and the de�
	ned policy exceptions�
The Secure Application Launcher �SAL� shown in Fig�

ure � is the main front�end of JSEF and allows the user to
execute classes inside the JSEF environment�



Figure �� JSEF�s Secure Application Launcher

SAL does not require the class which is to be started to
ful	ll special requirements such as having a main method�
Instead it utilizes Java�s Re
ection API� examines the given
class and allows the user to choose any of its static methods�
public constructors� or a combination of these as a �start�
method� Like the Policy Tool� SAL o�ers an easy�to�use
GUI� Since both the constructors and methods might re�
quire parameters� SAL allows the user to specify values for
those parameters� SAL�s integrated task manager provides
a feedback of all the tasks that currently use JSEF�
The Con�guration Tool shown in Figure � provides a GUI

which allows the user to con	gure JSEF itself�

Figure �� JSEF�s Con�guration Tool

The most important setting is the root con	guration which
de	nes where the global policy and the user de	nitions can
be found� This con	guration must be secured specially to
ensure that it can only be changed by an administrator� The
user data view provides the user management front�end of
JSEF� Users can be added or removed and their privileges
and the location of their local policy de	nitions can be de�
	ned� The privileges of a user include whether the user
is allowed to change the various con	guration settings and
whether the user may alter the local or global policy settings�
Additional con	guration views are available to de	ne low�
level system con	gurations such as the XML parser used�

6. RELATED WORK
Java�s security model is well�documented �� �� �� and

many approaches exist to extend or replace this basic model

in terms of new security features and capabilities� For ex�
ample� ��� describes an approach which uses protected do�
mains� so�called playgrounds� to protect machines and re�
sources from mobile code� A playground is a dedicated ma�
chine on which the mobile code is executed� with its input
and output re�directed to the user�s machine� This creates
the illusion that the mobile code is executed on the user�s
computer while it is actually run on the playground machine
which is physically separated from the user�s machine and
thus the mobile code has no access to the user�s resources�
The J�Kernel ��� goes even further by replacing the stan�

dard Java security architecture with a capability�based sys�
tem that supports multiple cooperating protection domains
inside a single Java virtual machine� While Java�s protection
domains are closer to the notion of a user� J�Kernel de	nes
them more like processes which considerably changes the
security semantics� Via protection domains J�Kernel sepa�
rates objects into local ones and capability objects which are
shared among domains� It provides capability�based com�
munication channels and supports revocation of capabilities�
The security model for aglets ��� uses concepts closely

related to JSEF but targets the speci	c needs of mobile
agents� Aglets are mobile agents which execute in a cer�
tain context on any aglet�aware host they visit� The aglet
security model de	nes the concept of principals to separate
the security requirements of the owner� the manufacturer�
and the context master of an aglet� The principals de	ne
layers of security in which security settings can be re	ned
but not overruled� If an aglet matches several policy de	ni�
tions� a �consensus voting rule� combines the policy settings�
Since aglets are mobile agents the privileges which de	ne ac�
cess to local resources are augmented with privileges de	ning
inter�aglet behavior and allowances� Allowances are privi�
leges encapsulating system resources such as memory usage
and CPU time� whose implementation and enforcement re�
quire �incompatible� modi	cations to the Java virtual ma�
chine� Similar to JSEF� users may be grouped in named
groups and share a set of permissions� Policy de	nitions
may be combined with simple boolean operators which sup�
ports composite privileges and negation of privileges� Fur�
thermore� black�lists exist to disallow suspicious aglets and
contexts� JSEF�s subtractive permissions and policy excep�
tions can be expressed in the aglet model by the use of
boolean operators� The di�erent principals imposing pol�
icy restrictions on an aglet relate to local and global policies
in JSEF� While the aglet security model extends the Java se�
curity model to provide inter�aglet permissions� JSEF only
builds on the permissions de	ned by Java� In contrast to
the aglet model� JSEF facilitates to structure user groups
hierarchically which supports simpler and less error�prone
administration of security pro	les�
An interesting conceptual approach to extend Java�s se�

curity features and simplify de	nition of security pro	les is
presented in ���� This approach suggests a constraint lan�
guage which allows the user to specify security constraints
which are a combination of subject�based� object�based� and
history�based policy statements� History�based constraints
are a powerful concept and support the de	nition of policy
rules over time� For example� it could be speci	ed that an
applet can only make � write accesses to a 	le� Additionally
rules can specify conditional constraints� such as if a piece
of mobile code wishes to access a protected 	le it no longer
can make a network connection� Constraints can be com�



bined with simple logical operators and can de	ne both ad�
ditive and subtractive permissions �similar to JSEF�� Policy
exceptions are not an explicit concept but can be de	ned
implicitly� No grouping mechanisms and hierarchies exist
which makes it di�cult to assign layered security pro	les
to users� The de	nition of constraints is cumbersome since
an S�expression type language is used and no graphical tool
support is available� This approach has been applied to and
tested only with JDK ���� However� we plan to further in�
vestigate the addition of a constraint language as suggested
in ��� to JSEF to further extend it�
In contrast to these approaches� JSEF does not intro�

duce incompatible Java security features� Instead it uses
the existing Java security architecture but enhances its us�
ability� introduces higher�level abstractions and hierarchical
policies� and o�ers new ways of con	guration as described in
the previous sections� It simpli	es the de	nition and mainte�
nance of security policies at the system and at the user levels�
Such simpli	cation facilitates to prevent the introduction of
security holes and thus improves a system�s overall secu�
rity characteristics� None of the above approaches supports
�interactive� runtime security negotiation and o�ers simple
ways to de	ne system�wide �or even network�wide� security
policies as JSEF� Also tool support for security maintenance
is very limited or does not exist at all�
The idea of overruling authorizations is also presented in

�� where a multipolicy access control system for databases
is discussed� Users and groups can be assigned positive and
negative authorizations which can either be strong or weak�
Authorizations can be overridden by more speci	c autho�
rizations �according to their position in the group mem�
bership graph�� In JSEF a user inherits all �even con
ict�
ing� permissions and con
icts are resolved afterwards� In
�� strong authorizations always overrule weak ones and the
set of strong authorizations must be consistent� i�e�� no con�

ict among strong authorizations may exist� Con
ict reso�
lution rules only apply to con
icts among weak authoriza�
tions� The main di�erence to JSEF�s policy model is that in
JSEF global permissions are not necessarily stronger than
local ones� e�g�� a local subtractive permission is allowed
to overrule a global additive one while a global subtractive
permission can never be overruled by a local additive one�
The strength of a permission in JSEF is thus dependent on
both the scope �global or local� and the type �additive or
subtractive� of the permission�

7. CONCLUSIONS
The Java Secure Execution Framework �JSEF� presented

in this paper is built on top of Java�s standard security archi�
tecture and extends it with powerful features in a compatible
way� It uses a hybrid policy model which supports additive
and subtractive permissions with a denial�take�precedence
rule to resolve con
icts� JSEF�s policy semantics is formally
de	ned in an ASL�based notation� It provides a security
framework which simpli	es the maintenance of security pro�
	les and provides graphical tool support for security admin�
istration� Better maintenance support may improve overall
system security since it helps to prevent sloppy con	gura�
tions or the introduction of security holes by erroneous con�
	gurations�
While in standard Java only permitted accesses can be

de	ned� which can blow up con	gurations and makes them
cumbersome to maintain� JSEF additionally supports the

speci	cation of forbidden accesses �subtractive policy� and
policy exceptions� JSEF�s hierarchical groups provide a con�
cept to aggregate users into groups� freely structure these
groups into a hierarchy� and assign security pro	les to them�
The concept of global and local policies in JSEF enables the
de	nition of network�wide security policies that de	ne a se�
curity corset for users while still allowing them to freely
adjust their con	gurations inside these mandatory security
standards� Thus users can tailor their local policy towards
their needs but cannot break the system�wide policy�
In the standard Java security model� a forbidden access

typically terminates the execution� whereas JSEF o�ers the
possibility to negotiate security at runtime� JSEF intercepts
forbidden accesses and the user �or a special security control
component� can negotiate with the relevant Java code about
the requested permissions� This can avoid tedious trial�and�
error cycles to 	nd out about the actual permissions required
by a piece of mobile code�
JSEF� all associated tools� and full documentation are

available under the terms of the GNU General Public Li�
cense from http���www�infosys�tuwien�ac�at�jsef��

8. REFERENCES
�� E� Bertino� S� Jajodia� and P� Samarati� Supporting

multiple access control policies in database systems� In
Proceedings of the IEEE Symposium on Research in
Security and Privacy� Oakland� Califorinia� pages
�� ���� May ����� http���isse�gmu�edu��csis�
publications�oklnd���samarati�ps�

�� G� Coulouris� J� Dollimore� and T� Kindberg�
Distributed systems � concepts and design� chapter ���
pages ��� ���� International Computer Science Series�
Addison�Wesley� Reading� Mass� and London� �nd
edition edition� �����

�� S� Fritzinger and M� Mueller� Java security� ����� Sun
Microsystems� Incorporated� White Paper�
http���java�sun�com�security�whitepaper�txt�

�� L� Gong� Secure Java Classloading� IEEE Internet
Computing� ������� ��� November�December �����

�� L� Gong� M� Mueller� H� Prafullchandra� and
R� Schemers� Going beyond the sandbox� an overview
of the new security features in the Java Development
Kit ���� In Proceedings of the USENIX Symposium on
Internet Technologies and Systems� Monterey�
California� December ���	� USENIX Association�
�����

�� L� Gong and R� Schemers� Implementing protection
domains in the Java Development Kit ���� In
Proceedings of the Internet Society Symposium on
Network and Distributed Systems Security� San Diego�
CA� USA� �����

�� S� Gritzalis and D� Spinellis� Addressing threats and
security issues in world wide web technology� In
Proceedings of CMS
�	� �rd IFIP TC�TC��
International Joint Working Conference on
Communications and Multimedia Security� Athens�
Greece� pages �� ��� September �����

�� M� Hauswirth� Internet�Scale Push Systems for
Information Distribution�Architecture� Components�
and Communication� PhD thesis� Distributed Systems
Group� Technical University of Vienna� October �����

�� M� Hauswirth and M� Jazayeri� A Component and



Communication Model for Push Systems� In
Proceedings of the ESECFSE �� � Joint 	th
European Software Engineering Conference �ESEC�
and 	th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering �FSE�	��
Toulouse� France� September ����� ����� pages �� ���
September ����� http���www�infosys�tuwien�ac�at�
Sta��pooh�papers�PushIssues��

��� M� Hauswirth� C� Kerer� and R� Kurmanowytsch�
Minstrel Client Security Framework� ����� http�
��www�infosys�tuwien�ac�at�Minstrel�Receiver�CSF��

��� C� Hawblitzel� C��C� Chang� G� Czajkowski� D� Hu�
and T� von Eicken� Implementing multiple protection
domains in Java� In Proceedings of the USENIX
Annual Technical Conference� New Orleans�
Louisiana� June ����� USENIX Association� �����

��� S� Jajodia� P� Samarati� and V� S� Subrahmanian� A
Logical Language for Expressing Authorizations� In
Proceedings of the ���	 IEEE Symposium on Security
and Privacy� May ��	� ���	� Oakland� CA� �����

��� G� Karjoth� D� B� Lange� and M� Oshima� A Security
Model for Aglets� IEEE Internet Computing� �����
July �����
http���computer�org�internet�ic�����w����abs�htm�

��� C� Kerer� A 
exible and extensible security framework
for Java code� Master�s thesis� Distributed Systems
Group� Technical University of Vienna� Austria�
October �����

��� D� Malkhi� M� K� Reiter� and A� D� Rubin� Secure
Execution of Java Applets using a Remote
Playground�

In Proceedings of the IEEE Symposium on Security
and Privacy� Los Alamitos� California� May �����

��� G� McGraw and E� Felten� Java security and type
safety� Byte� �������� ��� January �����

��� G� McGraw and E� W� Felten� Java security� hostile
applets� holes� and antidotes� John Wiley� New York�
�����

��� G� McGraw and E� W� Felten� Securing Java� getting
down to business with mobile code� John Wiley� New
York� �����

��� N� V� Mehta and K� R� Sollins� Expanding and
Extending the Security Features of Java� In
Proceedings of the 	th USENIX Security Symposium�
San Antonio� Texas� January ������ ����� USENIX
Association� �����

��� A� Rubin and D� E� Geer� Mobile Code Security�
IEEE Internet Computing� ������� ���
November�December �����

��� Sun Microsystems� Incorporated� Secure computing
with Java� now and the future� September �����
White Paper� http�
��java�sun�com�marketing�collateral�security�html�

��� F� Yellin� Low level security in Java� In Proceedings of
the Fourth International World Wide Web
Conference� Boston� Massachusetts� USA� December
������ ����� volume � of World Wide Web Journal�
O�Reilly � Associates� Incorporated� November �����
http���www�w��org�pub�Conferences�WWW��
Papers��������html�


