Infrastructure for data processing in large-scale
Interconnected sensor networks

Karl Aberer, Manfred Hauswirth, Ali Salehit
*Distributed Information Systems Lab, Ecole Polytechniféelérale de Lausanne, Switzerland
Digital Enterprise Research Institute, National Univirsif Ireland, Galway, Ireland

Abstract—With the price of wireless sensor technologies di- L Serial Base

minishing rapidly we can expect large numbers of autonomous | A Comngator Computet
sensor networks being deployed in the near future. These ssor W—» - | \\

networks will typically not remain isolated but the need of @ L. - & -C=D-
interconnecting them on the network level to enable integrted “ ;@ *

data processing will arise, thus realizing the vision of a glbal @ Sink Node

“Sensor Internet.” This requires a flexible middleware laye
which abstracts from the underlying, heterogeneous sensarmet-
work technologies and supports fast and simple deployment
and addition of new platforms, facilitates efficient distributed
query processing and combination of sensor data, provides

support for sensor mobility, and enables the dynamic adaptn We do not make any assumptions on the internals of a
of the system configuration during runtime with minimal (zero- ~ gansor network other than that the sink node is connected to

programming) effort. This paper describes the Global Senso . .
Networks (GSN) middleware which addresses these goals. Wethe base computer via a software wrapper conforming to the

present GSN's conceptual model, abstractions, and archieture, GSN API. On top of this physical access layer GSN provides
and demonstrate the efficiency of the implementation throug So-calledvirtual sensors which abstract from implementation

experiments with typical high-load application profiles. The GSN details of access to sensor data and define the data stream
implementation is available from http://gsn.sourceforgenet/. processing to be performed. Local and remote virtual sensor
|. INTRODUCTION their data streams and the associated query processingecan b
& mbined in arbitrary ways and thus enable the user to build a
&%ta-oriented “Sensor Internet” consisting of sensor nete/

Fig. 1. GSN model

Until now, research in the sensor network domain h
mainly focused on routing, data aggregation, and energy ¢)
servation inside a single sensor network while the intaigma connected via ,GSN')) .
of multiple sensor networks has only been studied to a lnite " the follwoing we start with a detailed description of the
extent. However, as the price of wireless sensors dimisishdrtual sensor gbstracﬂo_n In Sectlo_n I, d|§cuss GSN'sadat
rapidly we can soon expect large numbers of autonomous SEH_ea,m processing qnd time .model n Section 1, and present
sor networks being deployed. These sensor networks will FPN'S System architecture in Section IV. We evaluate the
managed by different organizations but the interconnaatio Performance of GSN in Section V and discuss related work
their infrastructures along with data integration andriisted " Section VI before concluding.
guery processing will soon become an issue to fully exploit
the potential of this “Sensor Internet.” This requires filans Il. VIRTUAL SENSORS

which enable the dynamic integration and management ofypa key abstraction in GSN is thértual sensor. Virtual
sensor networks and the produced data streams. sensors abstract from implementation details of access to
The Global Sensor Networks (GSN) platform aims alensor data and correspond either to a data stream received
providing a flexible middleware to accomplish these goal§jrectiy from sensors or to a data stream derived from other
GSN assumes the simple model shown in Figure 1: A sensgf o sensors. A virtual sensor can be any kind of data
network internally may use arbitrary multi-hop, ad-hocting roqycer, for example, a real sensor, a wireless camera, a
algorithms to deliver sensor readings to one or more SiRfeqyiop computer, a cell phone, or any combination of virtua
node(s). A sink node is a node which is connected 10 Qnsors. A virtual sensor may have any number of input
more powerful base computer which in turn runs the GSfbis streams and produces exactly one output data stream
middleware and may particpate in a (large-scale) network Bfiseq on the input data streams and arbitrary local prowgssi

base computers, each running GSN and servicing one or mig, gpecification of a virtual sensor provides all necessary

sensor networks. information required for deploying and using it, including
The work presented in this paper was supported (in part) byNhational (1) metadata used for identification and discovery, (2) the

Competence Center in Research on Mobile Information andr@emcation strycture of the data streams which the virtual sensor acoasu
Systems (NCCR-MICS), a center supported by the Swiss NaltiSgience

Foundation under grant no. 5005-67322 and by the Lion prgjepported by and pro_duces (3) an SQL'b_ased spe0|f|cat|on of the SFream
Science Foundation Ireland under grant no. SFI/02/CE1/I13 processing performed in a virtual sensor, and (4) functiona

processing systems. The structure of the data stream alvirtu
sensor produces is encoded in XML as shown in lines 7—
10. The structure of the input streams is learned from the
respective specifications of their virtual sensor definiio
Data stream processing is separated into two stages: (1)

1 <virtual -sensor name="roomnonitor" priority="11">

2 <addr essi ng>

3 <predi cat e key="geogr aphi cal ">BC143</ pr edi cat e>

4 <predi cate key="usage">room noni t ori ng</ pr edi cat e>
5 </ addr essi ng>

6 <life-cycle pool -size="10" />

7 <out put - struct ure>

8 <field nane="i nage" type="binary:jpeg" />

9 <field nane="tenmp" type="int" />

10 </ out put - structure>

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

<predi cate key="type">Camer a</ predi cat e>
</ addr ess>
<query>sel ect * from WRAPPER</ query>
</ source>
<source alias="tenperaturel” storage-size="1nt
di sconnect - buf f er - si ze="10">
<addr ess wrapper ="r enot e" >
<predi cate key="type">tenperature</predi cate>
<predi cate key="geogr aphi cal ">BC143- N</ pr edi cat e>
</ addr ess>
<query>sel ect AVG(tenpl) as T1 from WRAPPER</ query>
</ source>
<source alias="tenperature2" storage-size="1nf
di sconnect - buf f er - si ze="10">
<addr ess wrapper ="r enot e" >
<predi cate key="type">tenperat ure</ predi cat e>
<predi cat e key="geogr aphi cal ">BC143- S</ predi cat e>
</ addr ess>
<query>sel ect AVG(tenp2) as T2 from WRAPPER</ query>
</ source>

1L <storage permanent="true’ history-size="10n" /> processing applied to the input streams (lines 20, 28, afd 36
1 <streams>

13 <stream name="cant > and (2) processing for combining data from the differentinp

14 <source alias="canf storage-size="1" . .

15 di sconnect - buf f er - si ze="10"> streams and producing the output stream (lines 38-43). To
16 <address wrapper="renot e" >
17 <predi cat e key="geogr aphi cal " >BC143</ pr edi cat e> specify the processing of the input streams we use SQL cierie

which refer to the input streams by the reserved keyword
VRAPPER. The attributemr apper ="r enot e" indicates that

the data stream is obtained through the network from another
GSN instance. In the case of a directly connected local senso
thewr apper attribute would reference the required wrapper.
For exampleyw apper ="t i nyos" would denote a TinyOS-
based sensor whose data stream is accessed via GSN's TinyOS
wrapper. GSN already includes wrappers for all major TinyOS
platforms (Mica2, Mica2Dot, etc.), for wired and wireless
(HTTP-based) cameras (e.g., AXIS 206W), several RFID read-

38 < > . .
» q“?elyecr cam i cture as | mge, temperature. T1 as temp ers (Texas Instruments, Alien Technology), Bluetooth desj
rom cam tenperature.
a1 where temperatured. T > 30 AND Shockfish, WiseNodes, epuck robots, etc. The implememtatio
42 tenperaturel. T1 = tenperature2. T2 .
a3 | clavery> effort for wrappers is rather low, for example, the RFID read
44 </ streanr . .
45 <Istreams> wrapper has 50 lines of code (LOC), the TinyOS 2.x wrapper

46 </virtual -sensor>

has 80 LOC, and the generic serial wrapper has 180 LOC.

In the given example the output stream joins the data
received from two temperature sensors and returns a camera
image if certain conditions on the temperature are satisfied
properties related to persistency, error handling, lyele, (lines 38-43). To enable the SQL statement in lines 39-42 to
management, and physical deployment. produce the output stream, it needs to be able to reference

To support rapid deployment, these properties of virtutthe required input data streams which is accomplished by
sensors are provided in a declarative deployment descriptine al i as attribute (lines 14, 22, and 30) that defines a
Figure 2 shows an example which defines a virtual sensor tisgmbolic name for each input stream. The definition of the
reads two temperature sensors and in case both of them hsivacture of the output stream directly relates to the dinemm
the same reading above a certain threshold in the last minyieocessing that is performed by the virtual sensor and needs
the virtual sensor returns the latest picture from the wabcabe consistent with it, i.e., the data fields in thel ect clause
in the same room together with the measured temperature(line 40) must match the definition of the output stream iedin

A virtual sensor has a unique name (thame attribute 7-10.
in line 1) and can be equipped with a set of key-value In the design of GSN specifications we decided to separate
pairs (lines 2-5), i.e., associated with metadata. Bottesypthe temporal aspects from the relational data processiimg us
of addressing information can be registered and discover8@L. The temporal processing is controlled by various at-
in GSN and other virtual sensors can use either the uniqtridoutes provided in the input and output stream specificest;
name or logical addressing based on the metadata to refeetg., the attributest or age- si ze (lines 14, 22, and 30)

a virtual sensor. The example specification above defineslefines the time window used for producing the input stream'’s
virtual sensor with three input streams which are identifiedata elements. Due to its specific importance the temporal
by their metadata (lines 17-18, 25-26, and 33-34), i.e., pyocessing will be discussed in detail in Section IIl.

logical addressing. For example, the first temperature®ens In addition to the specification of the data-related prop-
is addressed by specifying two requirements on its metadatéies a virtual sensor also includes high-level specifica-
(lines 25-26), namely that it is of type temperature senadr ations of functional properties: Thpri ori ty attribute (line

at a certain physical certain location. By using multiplpuih 1) controls the processing priority of a virtual sensor, the
streams Figure 2 also demonstrates GSN’s ability to acceds f e- cycl e> element (line 6) enables the control and
multiple stream producers simultaneously. For the momembanagement of resources provided to a virtual sensor such
we assume that the input streams (two temperature sensbrsas the maximum number of threads/queues available for pro-
a webcam) have already been defined in other virtual sensessing, the<st or age> element (line 11) allows the user
definitions (how this is done, will be described below). to control how output stream data is persistently stored, an

In GSN data streams are temporal sequences of timestamfieddi sconnect - buf f er - si ze attribute (lines 15, 23,
tuples. This is in line with the model used in most streal®l) specifies the amount of storage provided to deal with

Fig. 2. A virtual sensor definition

temporary disconnections. a distributed “Sensor Internet,” imposing a specific tenapor
For example, in Figure 2 thpri ori ty attribute in line semantics seems inadequate and maintaining it might come at
1 assigns a priority of 11 to this virtual sensor (10 isinacceptable cost. GSN provides the essential buildingkblo
the lowest priority and 20 the highest, default is 10), thfor dealing with time, but leaves temporal semantics largel
<life-cycl e> element in line 6 specifies a maximumto applications allowing them to express and satisfy their
number of 10 threads, which means that if the pool size $pecific, largely varying requirements. In our opinion,sthi
reached, data will be dropped (if no pool size is specified, pragmatic approach is viable as it reflects the requirements
will be controlled by GSN depending on the current loadgnd capabilities of sensor network processing.
the <st or age> element in line 11 defines that the output In GSN a data stream is a set of timestamped tuples. The
stream’s data elements of the last 10 hotnisst or y-si ze order of the data stream is derived from the ordering of the
attribute) are stored permanently to enable off-line psst®, timestamps and GSN provides basic support for managing and
the st or age- si ze attribute in line 14 defines that the lastmanipulating the timestamps. The following essential ises/
image taken by the webcam will be returned irrespective afe provided:
.the.time it was taken, Whgreas tQEOr age- si ze attributgs 1) a local clock at each GSN container:
in lines 22 and 30 define a time window of one minute 2) implicit management of a timestamp attribute
for the amount of sensor readings subsequent queries will (TIMEID);

be run on, i.e., theAVG operations in lines 28 and 36 are 3y jmpjicit timestamping of tuples upon arrival at the GSN
executed on the sensor readings received in the last minute” jniainer (reception time);

which of course depends on the rate at which the underlying4) a windowing mechanism which allows the user to define

temperature virtual sensor produces its readings, andyfinal count- or time-based windows on data streams.
thedi sconnect - buf f er - si ze attributes in lines 15, 23,

and 31 specify up to 10 missed sensor readings to be readn this way it is always possible to trace the tempqral h'y_stor
after a disconnection from the associated stream source. ©f d_ata s_tream e_:lements throughout_the processing history.
The query producing the output stream (lines 39-42) aiMultiple time attrl_butes can be associated W_lth data stseam
demonstrates another interesting capability of GSN assit aland can be manipulated through S_QL queries. Thus sensor
mediates among three different flavors of queries: The arirtune'["vorl,(S can be used as observathn tools for the_phyS|caI
sensor itself uses continuous queries on the temperattag d‘ﬁ’orld' in which network and processing delays are inherent

a “normal” database query on the camera data and producég%oerties of the obseryation process which cf';lnnot be_made
result only if certain conditions are satisfied, i.e., a ficdtion U2ansparent by abstraction. Let us illustrate this by a &mp
analogous to pub/sub or active rules. example: Assume a bank is being robbed and images of the

Virtual sensors are a powerful abstraction mechanism whi§HMe Scene taken by the security cameras are transmitted to
enables the user to declaratively specify sensors and eomt £ police. For th? insurance company the time at which the
nations of arbitrary complexity. Virtual sensors can be gdmages are taken in the bank W'” be relevant yvhen processing
fined and deployed to a running GSN instance at any tinfi'e(_:la'm' Wherea_s for th_e pol_|ce report the t|_me_the_|mages
without having to stop the system. Also dynamic unloadin r!ved at the police sta’qon will be relevant to justify ttngae
is supported but should be used carefully as unloading (Ijl:pterventmn. erendm_g on the context the robbery isthu
virtual sensor may have undesired (cascading) effects.tpuei@king place at different times. S
space limitations we cannot describe all possible configara 1 1€ temporal processing in GSN is defined as follows: The
options, for example, how virtual sensors are mapped %oductlon qfa new output stre_am element of a virtual sensor
wrappers which facilitate the physical access or the variolf @Wways triggered by the arrival of a data stream element
notification possibilities, such as email or SMS. A completom one of its input streams. Thus processing is eventedriv
list along with a user manual and examples is available frodftd the following processing steps are performed:
the GSN website at http://gsn.sourceforge.net/. 1) By default the new data stream element is timestamped
using the local clock of the virtual sensor provided that
the stream element had no timestamp.

Data stream processing has received substantial atteintion 2) Based on the timestamps for each input stream the
the recent years in other application domains, such as metwo stream elements are selected according to the definition
monitoring or telecommunications. As a result, a rich set of of the time window and the resulting sets of relations
query languages and query processing approaches for data are unnested into flat relations.
streams exist on which we can build. A central building block 3) The input stream queries are evaluated and stored into
in data stream processing is the time model as it defines the temporary relations.
temporal semantics of data and thus determines the desijn ard) The output query for producing the output stream ele-

IIl. DATA STREAM PROCESSING AND TIME MODEL

implementation of a system. Currently, most stream praegss ment is executed based on the temporary relations.
systems use a global reference time as the basis for theib) The result is permanently stored if required (possibly
temporal semantics because they were designed for cesttali after some processing) and all consumers of the virtual

architectures in the first place. As GSN is targeted at engbli sensor are notified of the new stream element.

Stream elements coming Stream elements coming

from stream source from stream source research/aurora/) users can compose stream relationships
@ é construct queries in a graphical representation which & th
Steam data clemeniTimesam Stream data elemert Timesa used as input for the query planner. The Continuous Query
Persistent storagd Language (CQL) suggested by the STREAM project [2] (http:
/Iwww-db.stanford.edu/stream/) extends standard SQltagyn
l @ l with new constructs for temporal semantics and defines a map-
/ ™ ping between streams and relations. Similarly, in Cougaf [1
l l (http://www.cs.cornell.edu/database/cougar/) an aednver-
sion of SQL is used, modeling temporal characteristics in
Quiput Relation Qutput Relarion the language itself. The StreaQuel language suggested by
l i the TelegraphCQ project [3] (http://telegraph.cs.bexialdu/)

follows a different path and tries to isolate temporal setican

@ Set of stream elements from the query language through external definitions in a C-
like syntax. For example, for specifying a sliding window fo
Virtual Sensor's Main Java Class a query dor-loop is used. The actual query is then formulated
in an SQL-like syntax.
Fig. 3. Conceptual data flow in a GSN node GSN's approach is related to TelegraphCQ’s as it separates

the time-related constructs from the actual query. Temnlpora
)) o specifications, e.g., the window size and rates, are spedifie
Figure 3 shows the logical data flow inside a GSN node.y\|_in the virtual sensor specification, while data processi
Additionally, GSN provides a number of possibilities 1qg gpecified in SQL. At the moment GSN supports SQL queries
control the temporal processing of data streams, €.9.. \yith the full range of operations allowed by the standard
« The rate of a data stream can be bounded in order to aVQ].QL Synta)(, i.e., joinsl Subqueries, Ordering' groupir[g?ousy
overloading the system which might cause undesiraljl@ersections, etc. The advantage of using SQL is that ieié-w

delays. known and SQL query optimization and planning techniques
« Data streams can be sampled to reduce the data ratecan be directly applied.

« A windowing mechanism can be used to limit the amount

of data that needs to be stored for query processing. IV. SYSTEM ARCHITECTURE
Windows can be defined using absolute, landmark, orGSN uses a container-based architecture for hosting Virtua
sliding intervals. sensors. Similar to application servers, GSN provides an

« The lifetime of data streams and queries can be boundggironment in which sensor networks can easily and flexibly
such that they only consume resources when actualig specified and deployed by hiding most of the system
active. Lifetimes can be specified in terms of explicitomplexity in the GSN container. Using the declarative spec
start and end times, start time and duration, or numbgeations, virtual sensors can be deployed and reconfigured
of tuples. in GSN containers at runtime. Communication and processing

As tuples (sensor readings) are timestamped, queries @mong different GSN containers is performed in a peer-t&rpe

also deal explicitly with time. For example, the query irstyle through standard Internet and Web protocols. By \newi
lines 39-42 of Figure 2 could be extended such that GSN containers as cooperating peers in a decentralizegisyst
explicitly specifies the maximum time interval between thee tried avoid some of the intrinsic scalability problems of
readings of the two temperatures and the maximum age rofny other systems which rely on a centralized or hieraethic
the readings. This would additionally require changes i tharchitecture. Targeting a “Sensor Internet” as the longite
input stream definitions as the input streams then must geovigoal we also need to take into account that such a system will
this information, and also the averaging of the temperatucensist of “Autonomous Sensor Systems” with a large degree
readings (lines 28 and 36) would have to be changed to bkfreedom and only limited possibilities of control, siwuily
explicit in respect to the time dimension. Additionally, 8S as in the Internet.

supports the integration of continuous and historical .data Figure 4 shows the layered architecture of a GSN container.
example, if the user wants to be notified when the temperatureEach GSN container hosts a number of virtual sensors
is 10 degrees above the average temperature in the lastit2i& responsible for. The virtual sensor manager (VSM) is
hours, he/she can simply define two stream sources, gettiegponsible for providing access to the virtual sensors:)-ma
data from the same wrapper but with different window sizeaging the delivery of sensor data, and providing the necgssa
i.e., 1 (count) and 24h (time), and then simply write a quedministrative infrastructure. The VSM has two subcompo-
specifying the original condition with these input streams nents: The life-cycle manager (LCM) provides and manages

To specify the data stream processing a suitable languagéhis resources provided to a virtual sensor and manages the

needed. A number of proposals exist already, so we compargeractions with a virtual sensor (sensor readings, .elthg
the language approach of GSN to the major proposals from tinput stream manager (ISM) is responsible for managing the
literature. In the Aurora project [5] (http://www.cs.brovedu/ streams, allocating resources to them, and enabling resour

‘ Integrity service ‘ sensor's properties and measurement characteristics asich
type of measurement, scaling, and calibration information
‘ a so-called Transducer Electronic Data Sheet (TEDS) wlsich i

‘ Access control

‘ GSN/Web/Web-Services Interfaces ‘ stored inside the sensor. When a new sensor node is detected
- by GSN, for example, by moving into the transmission range
% [Notification Manager] of a sink node, GSN requests its TEDS and uses the contained
é [] information for the dynamic generation of a virtual sensor

Query Processor -
2 description by using a virtual sensor description template
3 [Query Repository] and deriving the sensor-specific fields of the template from
the data extracted from the TEDS. At the moment TEDS

‘ Storage ‘ provides only that information about a sensor which enables

interaction with it. Thus for some parts of the generatetirair
sensor description, e.g., security requirements, storaud
Life Cycle Input Stream Manager resource management, etc., we use default values. Then GSN

Virtual Sensor Manager

Manager [Stream Quality Manager] dynamigally instan_tia_tes the new virtual sensor based @&n th
synthesized description and all local and remote procgssin
dependent on the new sensor is executed. This is done on-the-
fly while GSN is running. The inverse process is performed if

Pool of Virtual Sensors a sensor is no longer associated with a GSN node, e.g., it has

moved away.
In connection with RFID tags this “plug-and-play” feature
of GSN even provides new and interesting types of mobility
Fig. 4. GSN container architecture which we will investigate in future work. For example, an
RFID tag may store queries which are executed as soon as
the tag is detected by a reader, thus transforming RFID tags
sharing among them while its stream quality manager subcofrem simple means for identification and description into a
ponent (SQM) handles sensor disconnections, missing sialueontainer for physically mobile queries which opens up new
unexpected delays, etc., thus ensuring the QoS of strealins.ahd interesting possibilities for mobile information srsis.
data from/to the VSM passes through the storage layer which
is in charge of providing and managing persistent storage
for data streams. Query processing in turn relies on all of GSN aims at providing a zero-programming and efficient
the above layers and is done by the query manager (QMjrastructure for large-scale interconnected sensowoms.
which includes the query processor being in charge of SQIO justify this claim we experimentally evaluate the thropgt
parsing, query planning, and execution of queries. Theyquedf the local sensor data processing and the performance
repository manages all registered queries (subscriptiand and scalability of query processing as the key influencing
defines and maintains the set of currently active queries f@ctors. As virtual sensors are addressed explicitly antNGS
the query processor. The notification manager deals with tAedes communicate directly in a point-to-point (peer-éei)
delivery of events and query results to registered, local &fyle, we can reasonably extrapolate the experimentaltsesu
remote consumers. The notification manager has an extensiesented in this section to larger network sizes. For our

architecture which allows the user to largely customize igperiments, we used the setup shown in Figure 5.
functionality, for example, having results mailed or being The GSN network consisted of 5 standard Dell desktop PCs

notified via SMS. with Pentium 4, 3.2GHz Intel processors with 1MB cache,
The top three layers of the architecture deal with acce&B memory, 100Mbit Ethernet, running Debian 3.1 Linux

to the GSN container. The interface layer provides acces§h an unmodified kernel 2.4.27. For the storage layer use

functions for other GSN containers and via the Web (througtiandard MySQL 5.18. The PCs were attached to the following

a browser or via web services). These functionalities af@nsor networks as shown in Figure 5.

protected and shielded by the access control layer prayidin « A sensor network consisting of 10 Mica2 motes, each

access only to entitled parties and the data integrity layer mote being equipped with light and temperature sensors.

V. EVALUATION

which provides data integrity and confidentiality throuddce The packet size was configured to 15 Bytes (data portion
tronic signatures and encryption. Data access and datiiyte excluding the headers).

can be defined at different levels, for example, for the whole« A sensor network consisting of 8 Mica2 motes, each
GSN container or at a virtual sensor level. equipped with light, temperature, acceleration, and sound

An interesting feature of GSN’s architecture is the support sensors. The packet size was configured to 100 Bytes
for sensor mobility based on automatic detection of sensors (data portion excluding the headers). The maximum pos-
and zero-programing deployment: A large number of sensors sible packet size for TinyOS 1.x packets of the current
already support the IEEE 1451 standard which describes a TinyOS implementation is 128 bytes (including headers).

30

— T T T T T T T T T
r !” °Q 15 bytes —+—
> \ g L-] .-d ‘ :

, a
250 32KB = |
o

15 b B

Processing Time in (ms)

10

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Output Interval (ms)

Fig. 6. GSN node under time-triggered load

<) Tinvnode T-RFID ¥ axis 206w | Mica2 witn WRT54G
ol oo B LD & o he the GSN node and the WRT54G access point which repeated
Fig. 5. Experimental setup the last available frame in order to reach a frame interval of
10 milliseconds. All GSN instances used the Sun Java Virtual
Machine (1.5.0 update 6) with memory restricted to 64MB.

« A sensor network consisting of 4 Tiny-Nodes (TinyOS The experiment was conducted as follows: All motes and
compatible motes produced by Shockfish, http://wwwgameras were set to the same rate and produced data for
shockfish.com/), each equipped with a light and twe hours and we measured the processing delay. This was
temperature sensors with TinyOS standard packet sizerepeated 3 times for each rate and the measurements were
29 Bytes. averaged. Figure 6 shows the results of the experiment &r th

« 15 Wireless network cameras (AXIS 206W) which cagifferent data sizes produced by the motes and the cameras.
capture 640x480 JPEG pictures with a rate of 30 framesHigh data rates put some stress on the system but the abso-
per second. 5 cameras use the highest available cdote delays are still quite tolerable. The delays drop slyafp
pression (16kB average image size), 5 use mediufe interval is increased and then converge to a nearly anhst
compression (32kB average image size), and 5 use fi@e at a rate of approximately 4 readings/second or lesis. Th
compression (75kB average image size). The camer@sult shows that GSN can tolerate high rates and incurs low
are connected to a Linksys WRT54G wireless acceggerhead for realistic rates as in practical sensor depéoym
point via 802.11b and the access point is connected Vé@ver rates are more probable due to energy constraintseof th
100Mbit Ethernet to a GSN node. sensor devices while still being able to deal also with high

« A Texas Instruments Series 6000 S6700 multi-protocgdtes.

RFID reader with three different kind of tags, which can o ,)
keep up to 8KB of data. 128 Bytes capacity. B. Scalability in the number of queries and clients

The motes in each sensor network form a sensor networkln this experiment the goal was to measure GSN's scalabil-
and routing among the motes is done with the surge multi-h#) in the number of clients and queries. To do so, we used

ad-hoc routing algorithm provided by TinyOS. two 1.8 GHz Centrino laptops yvith 1GB memory as shown in
- Figure 5 which each ran 250 lightweight GSN instances. The
A. Internal processing time lightweight GSN instance only included those componerss th

In the first experiment we wanted to determine the internale needed for the experiment. Each GSN-light instance used a
processing time a GSN node requires for processing sensamdom query generator to generate queries with varyinig tab
readings, i.e., the time interval when the wrapper gets thames, varying filtering condition complexity, and varying
sensor data until the data can be provided to clients by tbenfiguration parameters such as history size, samplirg rat
associated virtual sensor. This delay depends on the sizeetf. For the experiments we configured the query generator
the sensor data and the rate at which the data is produced,tbuproduce random queries with 3 filtering predicates in the
is independent of the number of clients wanting to receiee tiwher e clause on average, using random history sizes from
sensor data. Thus it is a lower bound and characterizes theecond up to 30 minutes and uniformly distributed random
efficiency of the implementation. sampling rates (seconds) in the interj@D1, 1].

We configured the 22 motes and 15 cameras to produce datdhen we configured the motes such that they produce
every 10, 25, 50, 100, 250, 500, and 1000 milliseconds. A&s measurement each second but would deliver it with a
the cameras have a maximum rate of 30 frames/second, ipgbability P < 1, i.e., a reading would be dropped with
a frame every 33 milliseconds, we added a proxy betweerobability1 — P > 0. Additionally, each mote could produce

50 ¥
SES=30Bytes —+— T)) SES = 100 Bytes —+—
H SES =15KB
2F SES=25KB - 1

N
5]
T

30

20

Avg Processing Time for each client (ms)

10

Total processing time (ms) for the set of clients

L L
0 100 200 300 400 500
Number of Clients Number of clients

Fig. 7. Query processing latencies in a node Fig. 8. Processing time per client

a burst of R readings at the highest possible speed depending and the average processing time decreases as the newly

on the hardware with probability3 > 0, where R is a arriving clients can already use the services in place.

uniformly random integer from the intervdl, 100]. l.e., a CPU usage then drops to around 12%.

burst would occur with a probability of” + B and would 2) Again the spikes in the graph relate to bursts. Although

produce randomly 1 up to 100 data items. In the experiments the processing time increases considerably during the

we usedP = 0.85 and B = 0.3. On the desktops we used bursts, the system immediately restores its normal be-

MySQL as the database with the recommended configuration havior with low processing times when the bursts are

for large memory systems. Figure 7 shows the results for a over, i.e., it is very responsive and quickly adopts to

stream element size (SES) of 30 Bytes. Using SES=32KB varying loads.

gives the same latencies. Due to space limitations we do noB) As the number of clients increases, the average pro-

include this figure. cessing time for each client decreases. This is due to
The spikes in the graphs are bursts as described above. the implemented data sharing functionalities. As the

Basically this experiment measures the performance of the number of clients increases, also the probability of using

database server under various loads which heavily depends common resources and data items grows.

on the used database. As expected the database server's

performance is directly related to the number of the cliergs VI. RELATED WORK

500 clients issue queries is less than 50ms, i.e., appro&iya . vever, the focus is on systematic definition and classifi-

0.5ms per client. If required, a cluster could be used to t}E%ltion of abstractions and services, while GSN takes a more

improve query processing times which is supported by mo&éneral view and provides not only APIs but a complete query

of the existing databgses already.)) processing and management infrastructure with a deolarati
In the next experiment shown in Figure 8 we look aitanguage interface.

the average processing time for a client excluding the querypyq rq1ass [12] provides an Intemnet-based infrastructare
processing part. In this experiment we usétl = 0.85, connecting sensor networks to applications and offersctopi
B =0.05 and R is as above. _ _ based discovery and data-processing services. SimilaStd G
We can make three interesting observations from Figure iies to hide internals of sensors from the user but fosuse
1) GSN only allocates resources for virtual sensors that as8 maintaining quality of service of data streams in the
being used. The left side of the graph shows the situatipmesence of disconnections while GSN is more targeted at
when the first clients arrive and use virtual sensorflexible configurations, general abstractions, and disted
The system has to instantiate the virtual sensor amgery support.
activates the necessary resources for query processing;liFi [7] provides efficient, hierarchical data stream query
notification, connection caching, etc. Thus for the firgirocessing to acquire, filter, and aggregate data from pielti
clients to arrive average processing times are a bit highdevices in a static environment while GSN takes a peer-ty-pe
CPU usage is around 34% in this interval. After a shogerspective assuming a dynamic environment and allowigg an
time (around 30 clients) the initialization phase is ovanode to be a data source, data sink, or data aggregator.

IrisNet [8] proposes a two-tier architecture consisting aleployment and data-oriented integration of sensor nédsvor
sensing agents (SA) which collect and pre-process sensod supports dynamic configuration and adaptation at rentim
data and organizing agents (OA) which store sensor datadaro-programming deployment in conjunction with GSN'’s
a hierarchical, distributed XML database. This database pfug-and-play detection and deployment feature provides a
modeled after the design of the Internet DNS and suppobasic functionality to enable sensor mobility. GSN is imple
XPath queries. X-Tree [] extends IrisNet by providing anented in Java and C/C++ and is available from SourceForge
database centric programming model (stored functions aathttp:/gsn.sourcefourge.net/. The experimental exelo of
stored queries) with efficient distributed execution. Imzast GSN demonstrates that the implementation is highly efficien
to that, GSN follows a symmetric peer-to-peer approach affers very good performance and throughput even under high
already mentioned and supports relational queries using SQoads and scales gracefully in the number of nodes, queries,

Rooney et al. [10] propose so-called EdgeServers to interd query complexity.
grate sensor networks into enterprise networks. Edge8erve
filter and aggregate raw sensor data (using applicationfapec
code) to reduce the amount of data forwarded to applicatiokd] "?Aﬁi‘tfgﬁ' Jc r@?ﬁ‘ﬁéga’ggggmﬁdbwagﬁﬁ”a %‘é?fZigﬁka»LtiJr%%ﬂe’:teme"r
servers. The system uses publish/subscribe style comennic o niax Rasin. i iied Ryvkina, Nesime Tatul, Ying g’(i;f]%'
tion and also includes specialized protocols for the irgégn Stanley B. Zdonik. The Design of the Borealis Stream Proogss
of sensor networks. While GSN provides a general-purpose Engine. InCIDR, 2005.

. e g [2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, ko,
infrastructure for sensor network deployment and distedu R. Motwani, U. Srivastava, and J. Widonata-Sream Management:

query processing, the EdgeServer system targets en&erpris Processing High-Speed Data Streams, chapter STREAM: The Stanford

networks with application-based customization to redwe s 4l SD_f%tathﬁa”lj Ma”fgemeg SVSteCm- Sp“”/geﬂ I2806-h dehagi 3

.. . Irs andrasekaran, wen Cooper, mo eshpande, .
sor da_ta traffic in close_d environments. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishaoghy,
Besides these architectures, a large number of systems Samuel Madden, Vijayshankar Raman, Frederick Reiss, artiMe

for query processing in sensor networks exist. Aurora [5] Shalhd. TelegraphCQ: Continuous Dataflow Processing for asefthin
(Brandeis University, Braun University, MIT), STREAM [2] F world. In CIDR, 2003.

] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil PrabaakEvaluating
(Stanford), TelegraphCQ [3] (UC Berkeley), and Cougar [13] Probabilistic Queries over Imprecise Data. #GMOD, 2003.

(Cornell) have already been discussed and related to GSN [fl Mitch Cherniack, Hari Balakrishnan, Magdalena Balakim, Donald
. Carney, Ugur Cetintemel, Ying Xing, and Stanley B. Zdon$icalable

Section il. L . Distributed Stream Processing. GiDR, 2003.

In the Medusa distributed stream-processing system [14f] Amol Deshpande and Samuel Madden. MauveDB: Supportingld#

Aurora is being used as the processing engine on each gf based User Views in Database SystemsS@GMOD, 2006.

.. . . 7] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, Sz E. Wu,
the participating nodes. Medusa takes Aurora queries ar{d] O. Cooper, A. Edakkunni, and W. Hong. Design Consideratitars

distributes them across multiple nodes and particularty$es High Fan-in Systems: The HiFi Approach. GIDR, 2005.

on load management using economic principles and higl§l P- B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. &tsMn

a , : Architecture for a World-Wide S WelEEE Pervasive Computing,
availability issues. The Borealis stream processing engfih z(rz)'ggousré ora Tord-ide Sensor e vesive =ompiing

is based on the work in Medusa and Aurora and supports dys] A. J. G. Gray and W. Nutt. A Data Stream Publish/Subscrikre
namic query modification, dynamic revision of query results chitecture with Self-adapting Queries. International Conference on

. R . Cooperative Information Systems (CooplS), 2005.
and flexible optimization. These systems focus on (disteittu [10] Sean Rooney, Daniel Bauer, and Paolo Scotton. Techsidor Inte-

query processing only, which is only one specific component grating Sensors into the Enterprise NetworkEEE eTransactions on

of GSN, and focus on sensor heavy and server heavy applica- Nework and Service Management, 2(1), 2006.

ti d . [11] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and M. Rabaey. A

1on Qmalns. . . . service-based universal application interface for ad hoeless sensor
Additionally, several systems providing publish/sublseri and actuator networks. IAmbient Intelligence. Springer Verlag, 2005.

SWIe query process|ng Comparable to GSN eX'St, for examplbz] J. Shneldman, P. PletZUCh, J. Ledlle, M. RoussopOLM)s,Seltzer,

9. GSN | int t i isti h and M. Welsh. Hourglass: An Infrastructure for ConnectingnSor
[] can also Integrate easily existing approaches (as a Networks and Applications. Technical Report TR-21-04, \ldad

REFERENCES

new virtual sensor) for precision estimation, for exam&, University, EECS, 2004. http://www.eecs.harvard.edsyrah/hourglass/
or aggregation handling uncertainty, for example, [4]. papers/tr2104.pdf. o
[13] Yong Yao and Johannes Gehrke. Query Processing in Séletaorks.
In CIDR, 2003.

VII. CONCLUSIONS [14] Stan Zdonik, Michael Stonebraker, Mitch Cherniack,ud@etintemel,
The full potential of sensor technology will be unleashed Magdalena Balazinska, and_ Hari Balakrishnan. The Aurophl\ﬂedusa
through large-scale (up to global scale) data-orienteelirat- Eg?#%ﬁi;@g;‘;’;@g;mhmw Committe on Data Engineering, IEEE
tion of sensor networks. To realize this vision of a “Sensor
Internet” we suggest our Global Sensor Networks (GSN)
middleware which enables fast and flexible deployment and
interconnection of sensor networks. Through its virtuadlsse
abstraction which can abstract from arbitrary stream data
sources and its powerful declarative specification and yguer
tools, GSN provides simple and uniform access to the host
of heterogeneous technologies. GSN offers zero-progragmi

