
An overlay network for resource discovery in Grids �

Manfred Hauswirth, Roman Schmidt
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

As Grids try to achieve optimal and balanced utiliza-
tion of unused resources in a distributed system, fast and
efficient discovery of resource states is a key requirement.
For small to medium scale Grids, solutions such as the
approach in Globus work fine. However, for large, up to
global-scale Grids, this approach is not efficient and does
not scale. Additionally, even for smaller Grids, a central-
ized solution will always be a performance bottleneck and
a single point of failure. In this paper we investigate the ap-
plicability of a structured peer-to-peer system (overlay net-
work) for the discovery of Grid resources. Each node in the
Grid becomes a peer in the overlay network, which provides
a distributed directory service that allows the participants
to discover resources and maintain resource states. Overlay
networks implicitly balance load, scale well to very large
numbers in terms of nodes and data, and meet the partial
failure property of distributed systems, i.e., the system re-
mains operational despite partial failures. We will outline a
proof-of-concept implementation based on our P-Grid over-
lay network, present experimental results from a large-scale
deployment on PlanetLab and discuss the pros and cons of
overlay networks in the context of Grids.

1. Introduction

Fast discovery of available resources and efficient main-
tenance of resource states are key requirements for Grids
to achieve optimal utilization of the system and to balance
load among the participating computers. Current systems
such as Globus or Condor use server-based solutions to as-
sign computation requests (jobs) to available resources. Re-
sources publish their current state at servers which can then
be matched with job requirements to enable automatic job
�
The work presented in this paper was (partly) carried out in the frame-

work of the EPFL Center for Global Computing and was supported by the
Swiss National Funding Agency OFES as part of the European project DIP
(Data, Information, and Process Integration with Semantic Web Services)
No 507483.

scheduling. This approach works fine for small to medium
scale Grids, e.g., server clusters. For large-scale Grids this
approach does not scale well and will be a performance
bottleneck and a single point of failure, even if replicated
servers (clusters) are used, because though the computa-
tional load may be shared among the cluster nodes they still
would use a single network connection which may break
down and render the whole system dysfunctional. Only dis-
tributed approaches can remedy this problem, which, how-
ever comes at certain costs, as always when a centralized
system is being distributed. The question we want to inves-
tigate in this paper is, whether overlay networks are a viable
solution to address these problems and to what extent they
can help to minimize the costs of the distribution in respect
to discovery.

Similar to Grids, P2P systems build on the principles of
cooperation and sharing of resources. P2P systems such
as Gnutella, KaZaA, and eMule have proven their applica-
bility for global-scale resource discovery and file-sharing.
Currently, research focuses on structured overlay networks
to optimize performance. Examples of structured overlays
are Chord, Tapestry, and P-Grid. The underlying idea in
these systems is to build a distributed index of the resources
available at the nodes. The index is constructed such that
the search space (key space) is partitioned and each key
space partition is assigned to a peer. For being able to an-
swer queries on all the resources available in the system,
each peer builds up a routing table that enables it to forward
queries which it cannot answer locally, to peers that are
“closer” to the result. The construction and routing strate-
gies for these indexes differ a lot in terms of robustness and
flexibility. However, their common goal is to minimize the
forwarding steps required for successfully resolving queries
in the presence of arbitrary peer and connection failures,
as network communication is the major bottleneck in dis-
tributed systems. At the moment the best practical solutions
offer logarithmic search complexity, i.e., in a directory con-
sisting of � nodes the maximum number of communication
steps among the nodes to resolve a query is

�����	��
 �� . To
achieve robustness, multiple peers (replicas) are assigned to
each key space partition and the system has to keep them

in sync. The goal is to have at least one peer per partition
available to answer/forward queries at any time. The degree
of fault tolerance is tunable to system dependent require-
ments by the replication factor and the number of entries in
routing tables. A comprehensive overview of current struc-
tured overlay networks and the applied techniques is given
in [11].

In the following we will present a completely decentral-
ized approach to resource discovery. We use P-Grid, our
implementation of a structured overlay network, as the base
technology for the distributed directory assuming that the
software is installed on all Grid nodes. Without constrain-
ing general applicability, we use the directory to manage
resource requests for jobs which require CPU cycles. A
generalization to multiple resources is straight-forward as
will become clear when we present the approach. The basic
idea is that requesters publish their resource requirements
(CPU cycles) in the directory, resource providers query the
directory for matching requests, and can then decide which
requester to contact and offer the resource to. To enable
this efficiently, the directory (overlay network) has to sup-
port efficient range queries and updates which P-Grid offers
and we will describe in the following. As an alternative
strategy, many systems index the offered resources and al-
low requesters to search for resources matching their job
requirements. While basically both strategies can offer the
same level of functionality, this strategy puts much higher
requirements on the overlay network in respect to update
frequencies as we assume job descriptions to change less
frequently. Indexing job requirements enables the providers
to actively decide when to offer resources and to whom,
i.e., as soon as computers have idle resource (CPU cycles in
our experiments) they can look for jobs to process, whereas
with the other strategy users have to poll the system for suit-
able resources until they become available.

2. Related Work

The latest Monitoring and Discovery Service (MDS) of
Globus is based around WSRF (Web Services Resource
Framework) standards providing an index service, i.e., a
registry similar to UDDI, to maintain the set of registered
Grid resources in virtual organizations. MDS provides
query and subscription interfaces to arbitrarily detailed re-
source data and a trigger interface that can be configured
to take action when pre-configured conditions are met. In-
dexes can be combined in a hierarchical fashion to aggre-
gate data at different levels. Though MDS works well for
small to medium scales, it remains unclear how it could sup-
port global-scale grids as the hierarchical organization and
query routing has hot-spots and single-points-of failure.

Condor [10] targets primarily optimal CPU utilization. It
uses a centralized matchmaker to match resource requests

with offers. The centralized architecture is efficient for
small grids in LANs for which Condor was designed ini-
tially but does not scale up to larger scales.

Iamnitchi et al. [8] propose resource discovery based on
an unstructured network similar to Gnutella combined with
more sophisticated query forwarding strategies taken from
the Freenet overlay network. Requests are forwarded to one
neighbor only based on experiences obtained from previous
requests, thus trying to reduce network traffic and the num-
ber of requests per peer compared to simple query flood-
ing as used by Gnutella. The approach suffers from higher
numbers of required hops to resolve a query compared to
our approach and provides no lookup guarantees, i.e., an
unsuccessful lookup does not necessarily mean that no re-
source meeting the requirements is available because a suit-
able peer was simply not reached.

The most similar approach to ours is presented in [7]
and uses a range-query-enhanced version of CAN [12]. Re-
source descriptions and jobs are stored in the overlay net-
work enabling users to find suitable resources and com-
puters to find suitable jobs. The fundamental problem of
this approach lies in the overlay network because the ranges
themselves are hashed, and hence, simple key search op-
erations are not supported or are highly inefficient. Since
both key and range queries are needed, it is desirable to
have one mechanism supporting both, instead of maintain-
ing separate hash table for keys, and separate hash tables for
ranges, because such a strategy fails to reuse the resources
of the peers. In the context of Grids the system may become
inefficient because resource informations such as available
memory are highly dynamic and have to be up-to-date. In
case a resource changes its state a different peer would be-
come responsible for this resource leading to frequent dele-
tions and inserts (or updates) for the overlay network which
CAN does not tolerate well. Moreover, since they use CAN
as the underlying network, the search efficiency guarantees
hold only for uniform partitioning of the space, which con-
flicts with storage load which is arbitrarily distributed, as
will be the case for caching range queries, more so because
queries will also be non-uniformly distributed.

3. The P-Grid overlay network

We use the P-Grid overlay network [1, 3] as the base
technology for our distributed resource discovery service.
P-Grid is a structured overlay network based on the so-
called distributed hash table (DHT) approach. In DHTs
peer identifications and resource keys are hashed into one
key space. By this mapping responsibilities for partitions
of the key space can be assigned to peers, i.e., which peer
is responsible for answering queries for what partition. To
ensure that each partition of the key space is reachable from
any peer, each peer maintains a routing table. The routing

2

table of a peer is constructed such that it holds peers with
exponentially increasing distance in the key space from its
own position in the key space. This technique basically
builds a small-world graph [9], which enables search in�����	��
 �� steps. Basically all systems referred to as DHTs
are based on variants of this approach and only differ in
respect to fixed (P-Grid, Pastry) vs. variable key space par-
titioning (Chord), the topology of the key space (ring, inter-
val, torus, etc.), and how routing information is maintained
(redundant entries, dealing with network dynamics and fail-
ures, etc.).

Without constraining general applicability we use binary
keys in P-Grid. This is not a fundamental limitation as a
generalization of the P-Grid system to k-ary structures is
natural, and exists. P-Grid peers refer to a common under-
lying binary trie structure in order to organize their rout-
ing tables as opposed to other topologies, such as rings
(Chord), multi-dimensional spaces (CAN), or hypercubes
(HyperCuP). Tries are a generalization of trees. A trie is a
tree for storing strings in which there is one node for every
common prefix. The strings are stored in extra leaf nodes.
In the following we will use the terms trie and tree conter-
minously.

In P-Grid each peer ����� is associated with a leaf of
the binary tree. Each leaf corresponds to a binary string� ��� , also called the key space partition. Thus each peer
� is associated with a path � � ��� . For search, the peer stores
for each prefix � � ������ of � � ��� of length � a set of references� � ������ to peers � with property � � ������! � � �"����� , where �
is the binary string � with the last bit inverted. This means
that at each level of the tree the peer has references to some
other peers that do not pertain to the peer’s subtree at that
level which enables the implementation of prefix routing for
efficient search. The cost for storing the references and the
associated maintenance cost scale as they are bounded by
the depth of the underlying binary tree.

Each peer stores a set of data items # � ��� . For $%�
� ��� the binary key &('*) � $"� is calculated using an order-
preserving hash function, i.e., +-,�./�0,21435,/.768,*1:9<; � ,=.>�?6
; � ,21*� , which is pre-requisite for efficient range querying
as information is being clustered. &('*) � $"� has � � ��� as pre-
fix but it is not excluded that temporarily also other data
items are stored at a peer, that is, the set # � �� � � ���@� of data
items whose key matches � � ��� can be a proper subset of
� ��� . Moreover, for fault-tolerance, query load-balancing
and hot-spot handling, multiple peers are associated with
the same key-space partition (structural replication), and
peers additionally also maintain references A � ��� to peers
with the same path, i.e., their replicas, and use epidemic
algorithms to maintain replica consistency. Figure 1 shows
a simple example of a P-Grid tree. Note that, while the
network uses a tree/trie abstraction, the system is in fact
hierarchy-less, and all peers reside at the leaf nodes. This

avoids hot-spots and single-points-of-failures.

01 : 2
1 : 5

00 : 6
1 : 4

11 : 5
0 : 2 0 : 6

11 : 5 10 : 4
0 : 6

Routing table
(route keys with prefix P to peer X)

00 01 10 10 1100

0

00 01 10 11

1

query(5, 100)

query(4, 100), found!

query(6, 100)

01 : 2
1 : 3

Legend:

Peer X

Data store
(keys have prefix P)

3 4 521

P

6

X

P:X

Figure 1. P-Grid overlay network

P-Grid supports a set of basic operations: Retrieve(key)
for searching a certain key and retrieving the associated
data item, Insert(key, value) for storing new data items, Up-
date(key, value) for updating a data item, and Delete(key)
for deleting a data item. Since P-Grid uses a binary tree, Re-
trieve(key) is of complexity

���B�C�D
FE � E � , measured in mes-
sages required for resolving a search request, in a balanced
tree, i.e., all paths associated with peers are of equal length.
Skewed data distributions may imbalance the tree, so that
it may seem that search cost may become non-logarithmic
in the number of messages. However, in [2] it is shown that
due to the randomized choice of routing references from the
complimentary subtree, the expected search cost remains
logarithmic (GIHKJ �	��
 �), independently of how the P-Grid is
structured. The intuition why this works is that in search op-
erations keys are not resolved bit-wise but in larger blocks
thus the search costs remain logarithmic in terms of mes-
sages. This is important as P-Grid’s order-preserving hash-
ing may lead to non-uniform key distributions.

The basic search algorithm is shown in Algorithm 1.

Algorithm 1 Search in P-Grid: Retrieve(key, p)
1: if LNM O�P�QSR/T�U then
2: return(V:W7X>M O�PZY R/T�U[M\V]P�^_R/T�U);
3: else
4: determine ` such that LNM\R/T@U�a�`CPb^ LNM O"a�`CP ;
5: r = randomly selected element from c=M O(a�`CP ;
6: Retrieve(key, r);
7: end if

� in the algorithm denotes the peer that currently pro-
cesses the request. The algorithm always terminates suc-
cessfully, if the P-Grid is complete (ensured by the con-
struction algorithm) and at least one peer in each parti-
tion is reachable (ensured through redundant routing table
entries and replication). Due to the definition of � andd '2egf/hg'*i5' � &('*)������ it will always find the location of a peer at
which the search can continue (use of completeness). With
each invocation of

d '*egf*hg'*i"' � &('*)��B��� the length of the com-

3

mon prefix of � � ��� and &('*) increases at least by one and
therefore the algorithm always terminates.

Insert(key, value) and Delete(key) are based on P-Grid’s
more general update functionality [5], Update(key, value),
which provides probabilistic guarantees for consistency and
is efficient even in highly unreliable, replicated environ-
ments, i.e.,

�����	��
FE � EZj f/'�����hgk>l5eghgm/��n�l"koeZm/f[� . An insert op-
eration is executed in two logical phases: First an arbitrary
peer responsible for the key-space to which the key belongs
is located (Retrieve(key)) and then the found peer notifies its
replicas about the inserted key using a light-weight hybrid
push-and-pull gossiping mechanism. Deleting and updating
a data item works alike.

Besides search for exact keys, P-Grid also supports sub-
string search and range queries of arbitrary granularity,
which are specifically important in the context of discover-
ing Grid resources. In fact, range queries come quite natural
with P-Grid’s underlying trie abstraction, which is a com-
mon data structure in databases to enable good clustering
and efficient query processing. Given a query for a rangep ��q/�@r-q�s we can use a sequential (min-max) or a parallel strat-
egy (shower) to resolve the query. In the sequential case we
just have to locate a peer which is responsible for ; � ��q>� us-
ing Retrieve(key, p), and then step through the leave nodes
of the trie until we hit a peer responsible for ; � r�q]� . The
complexity in terms of messages for this approach would
be
���B�C�D
 �� for locating the first peer plus one message for

each peer in the interval. The parallel strategy would first
determine the longest common prefix of ; � ��q>� and ; � r�q]� .
When this prefix has been resolved in the routing process,
the range query has reached the sub-trie that holds the range
and thus the query can be forwarded to the peers in the
sub-trie in parallel. This requires a bit more messages but
reduces latency. Both algorithms are efficient in terms of
message complexity, can answer queries of arbitrary granu-
larity, and are independent of the size of the queried range
and only depend on the size of the result set. Detailed anal-
yses of the message complexity of both approaches along
with an experimental evaluation of the implementation on
PlanetLab are given in [6].

4. Our Approach

Our approach can be based on an overlay network con-
structed and maintained by peers participating in a Grid or
peers devoted explicitly for resource management. It may
be sufficient to use Grid nodes to manage the resources
but dedicated nodes may improve the overall performance
because they are independent of the Grid’s utilization and
load. If dedicated nodes are used, they should still be dis-
tributed among institutions and across administrative board-
ers to avoid a single point of failure regarding network con-
nectivity. The number of peers would depend on the number

of nodes in the Grid and the number of users and jobs which
can be very high for P-Grid. With overlay networks it is as
well possible to start with a smaller setup and add peers as
needed without requiring reconfiguration. Temporary peer
failures due to hardware maintenance or defects are com-
pensated by the built-in replication and failure resilience of
P-Grid (replication of data and routing information). Job re-
quests and queries to find suitable jobs may be issued from
any peer in the overlay, i.e., all peers can act as entry points
providing equal performance characteristics. However, to
avoid overloading a single peer, requests should be issued
to peers uniformly and randomly which is easy to achieve.

4.1. Job advertisements

In our setup users define their jobs by the number
of required CPU cycles and optional resource require-
ments such as disk space or free memory, i.e., the num-
ber of required CPU cycles is used as the key for in-
dexing. The number of requirements attached to the
key (CPU cycles) is not limited and can be extended
but everyone must use the same vocabulary to describe
them. A possible job advertisement could then be given
as CPU_cycles=3500,disk=50MB,mem=1024MB,
advertiser=http://need.cpu.com/job42. Job
advertisements are stored in the overlay network and re-
source providers can look for matching jobs they are will-
ing to process. Assuming that CPU cycle requirements are
distributed over a certain range, different key distributions
must be handled. To show the applicability of P-Grid, we
compared a uniform distribution of CPU cycle requirements
which typically is easy to handle, with a highly skewed
Pareto or Zipf distribution, for example, if most job adver-
tisement are at the maximum of possible values and then
sharply decrease. We chose these distributions to show the
insensitivity of our approach towards standard distributions
that can occur frequently in practice (P-Grid’s performance
remains logarithmic even for such skewed distributions as
described in Section 3). Due to space limitations, however,
we can only present these two extreme cases.

4.2. Job matching

Computers having idle CPU cycles use the overlay net-
work to find the next suitable job(s) they can process. A job
is suitable for a computer if it not exceeds the number of
required CPU cycles and the computer fulfills optional job
requirements such as disk space, free memory, etc. How-
ever, the concrete process to decide this can be handled by
each node individually. To find a suitable job, a computer
could use any thinkable strategy. For example, if a com-
puter would only want to service jobs inside a certain range
to optimize resource usage and simplify scheduling, then

4

this would result in a simple range query. If a computer
would accept any job up to a given maximum, then again
this would be a range query with 0 as the lower bound and
telling the overlay to only return a certain number of hits to
not overload the network (this can be enforced very easily).
Job advertisements could also include priorities to enable a
computer to select the most relevant one. Once a matching
job has been discovered by any strategy, the computer will-
ing to process it, would simply contact the advertising node,
who then can remove the advertisement from the overlay
and send the job to the node which contacted it.

5. Experimental evaluation

From the above description of our approach it is clear
that it most critically depends on the efficient implemen-
tation of range queries. In this section we present experi-
mental results for range query efficiency from a large-scale
deployment of P-Grid on the PlanetLab [4] infrastructure.
PalnetLab offers a planet-wide distributed testbed for prac-
tical testing of large-scale distributed systems. We show
results for both types of range query algorithms (min-max,
shower) for two extreme key distributions. The implemen-
tation used in our experiments is available from http:
//www.p-grid.org/.

In the experiments we used a network of 250 peers each
running on a dedicated physical PlanetLab node. We in-
serted 2500 unique data items into the overlay, i.e., each
peer should be responsible for 75 data items on average
given an average replication factor of 5. Due to this repli-
cation of data which is necessary to compensate for node
and network failures we had a total of 12500 data items
in the system. To show that the algorithms work for any
data distribution, we used two different data sets, one uni-
formly distributed and one Pareto distributed (with a prob-
ability density function of tvu>wx=yBz w and parameters &{ }| and
l~ ��(H G) as shown in Figure 2. Pareto is a typical long-tail
distribution which occurs frequently in query distributions.
We will see in the experiments that P-Grid is insensible to
such distributions due to the efficiency of the underlying
load-balancing algorithm which balances both storage and
replication load. We can thus safely infer that if the results
are good for a Pareto distribution, the system will perform
equally well for other frequent long-tail distributions, e.g.,
Zipf.

Each peer selected randomly 10 data items of a global
set according to one of these distributions. The peers
then constructed a P-Grid which had an average height of
J � �	��
 1 1������.g�>��� �JIH � . Then range queries which affected data
from all partitions of the data sets were issued. The queries
were started from random peers with random lower range
bounds, and were constructed in a way, such that they would
return 50, 100, 150, 200, 400, and 800 data items. For each

0 0.5 1 1.5 2 2.5
x 104

0

50

100

150

200

250

300

data item index

oc
cu

re
nc

e

Uniform data distribution

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

data item index

oc
cu

re
nc

e

Pareto data distribution

Figure 2. Data set distributions

of the six answer set sizes, each of the two distributions, and
each of the two algorithms, one query was issued by each of
the 250 peers, i.e., a total of � � � � � � ��J[G! 8�DG�GDG queries re-
sulting in 250 values per data point in the figures below. The
main objective of our experiments were to demonstrate the
cost/latency trade-off of the algorithms, and to show, that
because of the use of a trie-structured overlay network, the
cost of range queries is independent of the data distribution
and the size of the range, but only dependent on the used
algorithm and the size of the answer set.

Figure 3 shows the costs incurred by range queries in
terms of message latency (hops), i.e., the maximum number
of messages required to hit each sub-partition of the range,
i.e., one peer in each sub-partition. The error bars in the plot
represent the standard deviation.

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

size of answer set

ho
ps

shower, uniform
shower, pareto
min max, uniform
min max, pareto

Figure 3. Message latency (hops)

On average we need 3 hops to reach a responsible peer
for both types of algorithms, but the min-max algorithm
then suffers a bit from the sequential traversal of the range
to reach all sub-partitions after reaching the lower bound.
This leads to increasing hop counts with increasing range
sizes, whereas for the shower algorithm the number of hops
remains constant, i.e., it is rather insensitive to the size of
the answer set. However, this benefit comes at the cost of
an increase in the overall messages as shown in Figure 4.

The shower algorithm requires a slightly higher number

5

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

size of answer set

m
es

sa
ge

s
shower, uniform
shower, pareto
min max, uniform
min max, pareto

Figure 4. Message cost

of messages but improves latency as it sends them to the
responsible peers in parallel. Therefore all peers responsi-
ble for a range are reached after 3 hops (in the experiment’s
setup) independent of the range size. Range queries with
an answer set size of 50 are answered mostly by one peer
because peers on average are responsible for 50 to 100 data
items. It can further be seen that both algorithms perform
equally well for both data distributions and scale well. An
increase of the answer set size by a multiplicative factor of
the average peer storage size yields an additional message
on average which is the best possible result achievable with
limited storage available at the peers.

6. Conclusions

We have presented an approach of using the P-Grid
structured overlay network for resource discovery in Grids
based on advertising jobs in the overlay. To demonstrate the
applicability and efficiency of this approach, we presented
experimental results from a large-scale PlanetLab deploy-
ment of our implementation. From the experimental results
we can observe that the approach scales well, the cost and
latencies are low, and the system offers an efficient decen-
tralized discovery service in a real-world networking sce-
nario.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
P2P information systems. In Proceedings of the Sixth Inter-
national Conference on Cooperative Information Systems,
2001.

[2] K. Aberer. Scalable Data Access in P2P Systems Using Un-
balanced Search Trees. In Proceedings of the 4th Workshop
on Distributed Data and Structures (WDAS’2002), 2002.

[3] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: A Self-

organizing Structured P2P System. ACM SIGMOD Record,
32(3), 2003.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3), July 2003.

[5] A. Datta, M. Hauswirth, and K. Aberer. Updates in
Highly Unreliable, Replicated Peer-to-Peer Systems. In In-
ternational Conference on Distributed Computing Systems
(ICDCS), 2003.

[6] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer.
Range queries in trie-structured overlays. Technical Report
IC/2004/111, Ecole Polytechnique Fédérale de Lausanne
(EPFL), 2004.

[7] A. Gupta, D. Agrawal, and A. E. Abbadi. Distributed Re-
source Discovery in Large Scale Computing Systems. In
SAINT, pages 320–326, 2005.

[8] A. Iamnitchi and I. T. Foster. On fully decentralized resource
discovery in grid environments. In GRID ’01: Proceedings
of the Second International Workshop on Grid Computing,
pages 51–62, London, UK, 2001. Springer-Verlag.

[9] J. Kleinberg. The Small-World Phenomenon: An Algorith-
mic Perspective. In Proceedings of the 32nd ACM Sympo-
sium on Theory of Computing, pages 163–170, 2000.

[10] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference on Distributed Computing Systems (ICDCS),
pages 104–111, June 1988.

[11] J. Risson and T. Moors. Survey of Research towards
Robust Peer-to-Peer Networks: Search Methods.
Technical Report UNSW-EE-P2P-1-1, University of
New South Wales, Sydney, Australia, Sep. 2004.
http://www.ee.unsw.edu.au/˜timm/pubs/
robust_p2p/submitted.pdf.

[12] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A
Peer-to-peer Framework for Caching Range Queries. In
ICDE, pages 165–176, 2004.

6

