
An Architecture for Information Commerce Systems*

* This work was supported in part by the European Commission under contract IST-1999-10288, project OPELIX (Open Personalized
Electronic Information Commerce System).

Manfred Hauswirth, Mehdi Jazayeri,
Zoltán Miklós, Ivana Podnar

{ mh, mj, zm, ip} @infosys.tuwien.ac.at
Distributed Systems Group

Technical University of Vienna, Austria

Elisabetta Di Nitto
dinitto@elet.polimi.it

CEFRIEL
Milano, Italy

Andreas Wombacher
wombach@darmstadt.gmd.de

IPSI, GMD
Darmstadt, Germany

Abstract

The increasing use of the Internet in business and
commerce has created a number of new business op-
portunities and the need for supporting models and
platforms. One of these opportunities is information
commerce (i-commerce), a special case of e-
commerce focused on the purchase and sale of
information as a commodity. In this paper we present
an architecture for i-commerce systems using
OPELIX (Open Personalized Electronic Information
Commerce System) [11] as an example. OPELIX
provides an open information commerce platform
that enables enterprises to produce, sell, deliver, and
manage information products and related services
over the Internet. We focus on the notion of
information marketplace, a virtual location that
enables i-commerce, describe the business and do-
main model for an information marketplace, and dis-
cuss the role of intermediaries in this environment.
The domain model is used as the basis for the
software architecture of the OPELIX system. We dis-
cuss the characteristics of the OPELIX architecture
and compare our approach to related work in the
field.

1. Introduction
The Internet and the Worldwide Web have

spurred the generation of a large amount of informa-
tion and made possible its easy distribution over
space, time, and in many forms and modes. But the
ease of publishing and the universal availabil ity of
information have transformed the Internet into a
complex, even chaotic environment. Due to an in-
creasingly large number of information sources the
producers and potential users of information are dis-
connected with no natural way of finding out about
each other. Moreover, the users of information face
another substantial problem: once the required in-
formation source is located, there is no simple way
of assessing its dependabili ty. Conversely, informa-
tion providers are discontent with their means of
reaching potential customers.

As a solution to these problems we envision an
information marketplace, a virtual location where
providers offer information and services as goods

and customers can find, evaluate and buy the desired
information. In this context, information is the com-
modity being traded. Service is the facili ty offered to
the user and performed by a service provider.

The information marketplace is an environment
for information commerce (i-commerce). I-com-
merce is a special case of e-commerce focused on the
purchase and sale of information. In i-commerce
terms, information is considered a product that can
be represented as bits of data (e.g., weather forecasts,
daily news, stock quotes, etc.). Information products
are intangible and have no physical presence. I-
commerce is also known as “ trading of intangible
goods” [9]. Yet, information products have intrinsic
value and may be traded just as tangible goods.
Compared to tangible products, they are costly to
produce but cheap to reproduce. It is easy to
redistribute and update such products. This implies
that copyright issues become extremely important
and require special consideration.

The information marketplace offers a setting for
the introduction of new innovative services. In such
environment we envision the growth of intermediar-
ies, business actors that offer services to both cus-
tomers and providers. Search engines are a very
simple form of intermediary: they help customers in
finding providers. Portal sites are another kind of
intermediary: they classify providers and help
customers in searching based on some classification.
We envision many other services that intermediaries
may perform. Indeed, a possibly unlimited number of
intermediaries may exist, each adding value to an
information product, or performing a service for ei-
ther customer and/or provider.

In this paper we present the requirements of an in-
formation marketplace by defining a domain model
that identifies business actors, and products and
services provided by specific actors. We use the do-
main model as a starting point for designing the ar-
chitecture of an information marketplace software
system. Next we present the characteristics of the
OPELIX architecture, and discuss its design and
implementation decisions. Finally, we discuss and
compare the OPELIX architecture with related ini-
tiatives and platforms. The paper is organized as
follows: Section 2 discusses the role of intermediar-
ies in the information marketplace. In section 3 we

describe the domain model that was used as the basis
of the OPELIX architecture. OPELIX’s architectural
principles are presented and discussed in Section 4.
Section 5 relates our approach to other work in the
field. The final section summarizes lessons learned
and lists issues for further work.

2. Intermediary
By examining a simple transaction on the Internet

that conforms to an information marketplace
business process, we can identify a customer looking
for a product and a provider offering that product.
After locating the provider the customer sends a re-
quest and waits for provider's response. This simple
business transaction was used since the early days of
Web. However, the activity "find a provider" has
significantly changed due to tremendous Internet
growth. To deal with the overwhelming increase in
the number and variety of providers, a number of
services appeared that help the customer in finding
providers. Search engines and portals are examples
of such services. To take into account the role of
such sites in the interactions between customers and
providers, we introduce another information market-
place actor called intermediary. The intermediary, in
this case, adopts the activity formerly performed by
the customer and enables simple discovery of poten-
tial providers. Finding a provider is only one of the
services an intermediary may perform. We envision
the emergence of new intermediary services that will
become part of the information marketplace business
processes.

By concentrating on the role of the intermediary,
we can identify a number of services that either exist
today or may be offered as new businesses. To help
analyze intermediary services further, we can clas-
sify intermediaries in terms of their services. We
have identified the following classes of intermediar-
ies [8]:

Classifying (e.g., portals): these intermediaries
provide a classification of available providers or
products.

Filtering: these services provide a refined view of
existing providers or products. For example, a digest
service could provide a summary of information
from other sites or a specialization service could
provide specific information available from many
providers.

Qualifying: such intermediaries provide a quali fi-
cation service. For example, a particular service
could rate the reliabili ty of information products
available from other providers. Such a service could
be used by customers to choose what providers they
use and by providers to improve their services.

Authenticating: these intermediaries authenticate
the identities of customers, providers, and products.

Combining: these intermediaries combine the in-
formation products available from other providers.
For example, an "evening planning service" could
provide information about the starting time of an

opera performance, the traffic conditions around the
theater, and recommended restaurants.

Brokering (e.g., search engines): these intermedi-
aries help customers and providers find each other.

Mediating: These intermediaries help customers
and providers to conduct a business. For example, a
mediator could offer anonymous transactions so that
the customer and the provider do not learn one an-
other's identity. The difference between a broker and
a mediator is that the broker helps in identifying
customers and providers but the mediator helps in
carrying out the process of a transaction between a
customer and a provider.

These intermediary services are not only useful
functions but they also enable more sophisticated
business models for enterprises. For example, indi-
rect commerce is a business model where aff iliate
companies utilize web sites and/or push systems to
get in touch with possible customers. Added-value
commerce is a model where businesses sell higher-
level information products by filtering or combining
information sources.

3. Information marketplace domain
model

The domain model identifies business actors
involved in marketplace business processes,
describes their interactions, and discovers artifacts
that are used and produced during interactions. We
have two major goals for our domain modeling
procedure: to understand the context of information
marketplace, and to identify potential intermediary
services in the information marketplace environment.

Domain modeling is the initial step of the soft-
ware development process that enables the under-
standing of the system environment and is primarily
used for defining terms and enabling developer
communication and cooperation. We have decided to
employ the use case driven modeling approach de-
fined in [7] as a "technique for understanding the
business processes of an organization." In our case
the organization is the information marketplace.

The use case driven modeling approach employs
UML [2] use case diagrams for describing the con-
text of the information marketplace. The use case
diagram associates information marketplace actors
and a number of use cases. Use cases are usually
described by UML activity diagrams or sequence
diagrams that model organizational business
processes. They list the interacting actors, their
activities, and artifacts produced during the business
process, providing the input for the construction of
the class diagram which communicates the domain
model in a programmer-like style.

The reminder of this section presents the use case
diagram and the class diagram that comprise the in-
formation marketplace domain model. The detailed
description of the modeling procedure is given in [8].

3.1. Use case diagram
Figure 1 depicts the use case diagram that

describes the information marketplace context. The
diagram relates a customer, a provider, and an
intermediary performing a generic service.

In our model an intermediary performs services
for both customer and provider, and acts as a
connection between them. A customer uses the
services of an intermediary to simpli fy interactions
with providers. We model this interaction by the use
case Perform service. For example, an intermediary
can help a customer to find a dependable provider by
advertising products on behalf of a provider.

� � � � � � � �

� 	
 � �
 � � � � � �

� � � � � � � � � � � � � � � �

� � � � � ! " � � # $ % �

<<inc
lud

e>>

� � # $ & � �

' () * + , - . (* / ,

0 1 2 2 3 4 2 5 6 7 1 8 9

0 1 2 2 3 4 2 5 6 7 1 8 9 <<include>>

Figure 1: Use case diagram relating the actors
 of the information marketplace

After locating the provider, the customer can
choose to conduct business directly with the
provider. This situation is modeled by the use case
Supply product that connects customer and provider.
A customer may, however, communicate only with
an intermediary. In this case, the intermediary
delivers products and handles payment on behalf of
the provider. Thus intermediary service grows in
complexity: The intermediary interacts with the
customer and performs a service, but also interacts
with the provider. We model the interaction with the
Supply product use case. The two remaining use
cases Find provider and Find intermediary model the
initial process of locating providers and
intermediaries.

The most interesting and complex use case is
Perform service. In this initial modeling step we
think of it as a generic service. The Intermediary can
potentially offer an unlimited number of services.
However, a typical business process consists of a
combination of the following phases: advertising,
negotiation, ordering, payment, and delivery [6]. The
Intermediary can provide a service that enables one,
or a combination of the listed business phases. For
example, an intermediary can perform advertising on
behalf of a provider. To be able to do advertising, the
intermediary needs a description of provider
products, i.e., a product catalog from the provider. A
provider may, in another scenario, entrust both
advertising and negotiation to an intermediary and
supply the intermediary with the pricing and discount
model that will guide the negotiation process. In
another case, an intermediary may offer a number of
payment methods, e.g., different micropayment

protocols, as a service, or enable delivery via push
systems. It can also combine products coming from
several providers and autonomously offer combined
products to end customers. These are just some of
the examples of possible intermediary services that
can become part of the information marketplace
business processes.

To support the business process execution, the
marketplace needs to facil itate inter-operabili ty. The
exchange of standard messages that are understood
by all business actors is a prerequisite for automatic
communication. In an information marketplace, the
actors should be able to exchange requests, orders,
and offers to negotiate business terms related to
delivery and payment. They should also be capable
of delivering products to their customers, and
collecting revenue for their services.

3.2. Class diagram
The class diagram that represents the domain

model of the information marketplace is given in
Figure 2. It was created based on the information
acquired during the use case analysis.

We are considering business processes of the
information marketplace that relate a number of
business actors. Business relationship is the
aggregation of actors and electronic documents that
are involved in the business process. Customer,
intermediary, and provider are modeled as actors
with changing roles. Classes Request, Offer and
Order model the corresponding artifacts. They inherit
the properties of the abstract class Document since
these artifacts can be regarded as electronic docu-
ments. Document’s methods model the activities
performed by customers, intermediaries, or providers
that change the state of a particular document. An
important part of each document is the specification
of the requested, offered, or ordered information
product. Document is therefore associated with
Specification which specifies product features.

 Actor is associated with Document since an actor
creates a particular document and sends it to another
actor for analysis. A customer can create requests
and orders, a provider creates only offers, while
intermediary may create requests, offers and orders.

A provider creates and owns a number of
products. An association between Provider and
Product models this relationship. Product is
described by its specification: Product is therefore
associated with Specification.

The association between Intermediary and Service
describes the basic characteristic of an intermediary:
providing a service. Service inherits the properties of
Product. Product’s operations need to be overridden
in Service since the processes of creating and
modifying a service are quite different from those for
creating and modifying a product. The number of
actual services is currently unknown. Advertising,
negotiation, ordering, payment, and delivery are just
examples of potential intermediary services.

can be a B2B or
C2B relationship

Customer

receiveProduct()
payBill()
compareOffers()
chooseProvider()

defines requests,
orders, and offers;
specifies product
features;

individual or
organization

Request

Offer

Order

creates & owns ->

has

provides 1..*

Intermediary

receiveProduct()
payBill()
bill()
compareOffers()
chooseProvider()

performs
1..*

Role

notify()

1..*

creates & owns ->

Provider

sendBill()

0..*

Specification

create()
modify()

is a part of

2..n

Actor

ID

1..*

Business Relationship

2..n
0..*

Document

state

create()
send()
analyze()
accept()
reject()
modify()
close()

0..*

0..*

Product

create()
modify()
deliver()

1..*

Service

1..*

0..*0..*

Figure 2: Domain model for the information marketplace

Based on this model, we have concluded that
communication and coordination between business
actors, e.g., customers, providers, and intermediaries,
is the key for the supporting system. To enable such
communication, we need a standard language that
ensures inter-operabili ty. It should enable the ex-
change of requests, offers and orders among business
actors. Each document should contain the informa-
tion regarding involved parties and their roles in the
business process, and describe the related informa-
tion product and provided services. It is also crucial
to enable the execution of the business process
model that comprises predefined actions. It is highly
indeterministic since business decisions and events
trigger process actions. However, the process must
be guided to comply to predefined business rules,
which makes the supporting infrastructure design
even more complex.

The composition of intermediary services is the
other premier requirement that the supporting system
needs to address. For example, an intermediary may
decide to provide advertising and negotiation to its
customers. It therefore needs only those parts of the
system that provide the desired functionali ty without
losing inter-operabili ty.

The presented domain model and its analysis have
guided the definition of architectural principles for
the OPELIX platform. These principles and the
architecture are addressed in the following section.

4. Architecture
The domain model [8] and the phases model [6]

can be mapped onto a component-oriented architec-
ture easily which resulted in the current OPELIX

architecture. We tried to follow the domain model as
far as possible but of course had to adjust the design
to the specific needs of our industrial partners.

4.1. Design goals
The main design goals were component-orienta-

tion and inter-operabili ty. Component-orientation
was targeted in two ways: We wanted to enable the
use of existing components off-the-shelf (COTS) and
make OPELIX itself component-oriented to allow
OPELIX users to configure the platform according to
their requirements.

The support for COTS is critical since we did not
want to re-implement existing functionali ty, for
example payment services such as Millicent or SET,
but exploit existing components. This led to a simple
architectural pattern for the integration of COTS as
shown in Figure 3 for the payment component.

E-cash

MilliCent

SET

payment framework

Figure 3: Framework approach of OPELIX

For every component (or service) which uses
COTS the framework provides an external interface
for other OPELIX components and an internal inter-
face to the components used in a specific configura-
tion. This allows us to abstract from the specific in-
terfaces of concrete components (such as concrete
payment services) and offer a uniform interface for

other components. Thus other OPELIX components
only have to deal with a single interface for every
component regardless of the COTS used.

At first we were considering to base our frame-
work on existing component frameworks such as
Enterprise JavaBeans [10] or CORBA [12]. How-
ever, we had to step back from this approach because
we wanted to use the framework both on the client
side and at the server side. At the server (provider)
side typically enough computing and networking
resources are available and (expensive) licenses are
affordable. On the client side, however, we wanted to
have as littl e prerequisites as possible that an
installation would have to satisfy. It turned out that
our requirements are much simpler than the wealth
of functionali ties offered by component frameworks,
so we dropped this approach. Now the architecture
requires Java and a web server at the server side
(plus required COTS), and Java and a web browser
at the client side.

The second main goal for the design of the OPE-
LIX architecture was to have a flexible and extensi-
ble framework that could be easily tailored to the
configurations needed by the user. For example, if a
site did not want to support payment or advertising
we do not require it to install unnecessary compo-
nents. In contrast, we wanted to have a very minimal
set of components to be required and allow a user to
add further components as needed by his/her busi-
ness application or to delegate such functionalities to
intermediaries [6].

4.2. The OPELIX architecture
On the basis of the above considerations we de-

veloped an architecture composed of loosely-coupled
cooperating components, communicating over a
common communication infrastructure, which is
intended to support intermediaries to establish a vir-
tual marketplace where (1) information from provi-

ders is offered to customers; (2) intermediaries can
(re-)combine/enhance these products to produce new
ones which are also offered; (3) which allows
customers to easily find and buy the data he/she is
looking for; and (4) which enables providers to de-
legate the sale of his/her products to intermediaries.

The OPELIX architecture shown in Figure 4
(maximum configuration for an intermediary) uses a
problem-oriented amalgamation of well-established
architectural styles. This means that we have adopted
and used those architectural styles that best address
the concrete requirements.

The unifying principle of the whole OPELIX ar-
chitecture is component-orientation: Every compo-
nent should be exchangeable if its interface specifi-
cations are obeyed. This component-based approach
facilit ates the distribution of components in a net-
work and supports integration of third-party compo-
nents. Additionally, it provides a simple way for con-
figurations tailored to the users' needs and adjusts the
size and functionality of a site's installation to the
requirements and resources. OPELIX components
are independent of each other and can directly re-
quest services from the other components inside the
same installation.

OPELIX provides a set of services that fulfill
functional and non-functional requirements of i-
commerce applications. Each component is devoted
to accomplish a specific functionali ty and may rely
upon or interact with other components of the archi-
tecture. The components have been identified on the
basis of user requirements that where expressed as
UML use cases and descriptions by the industrial
partners in the OPELIX project.

The functional components (Targeting, Request
and Matchmaking, Negotiation, Payment, Delivery
and Dissemination) implement the phases described
in [6]:

P
ay

m
en

t

T
ar

g
et

in
g

S
E

T
M

ill
ic

en
t

A
gl

et
s

V
oy

ag
er R

eq
u

es
t

an
d

M
at

ch
m

ak
in

g

N
eg

o
ti

at
io

n

em
ai

l
M

in
st

re
l

User Profiles

Offer
Management

User Access

Security Services

Business Workflow

D
el

iv
er

y
an

d
D

is
se

m
in

at
io

n

SEMPER

Browser

Communication Infrastructure

Figure 4: The OPELIX architecture

Targeting provides advertisements and offers to
potential customers based on their previous actions
or their preferences (user profile). It lets the
intermediary define the rules to be used in marketing
campaigns and relies on the Delivery and
Dissemination component to transmit these data to
the targeted customers. Additionally it provides the
User Access component with the advertisements that
might be interesting for a customer when the
customer accesses the OPELIX system.

Request and Matchmaking allows the user to
define a request as a set of constraints on product
characteristics. The user can indicate which
constraints are negotiable. On the basis of such
specifications this component searches through
available products and matches requests to offers.
The searching process may span over different
producers' sites, depending on the way content is
managed and on the type of the request.

Negotiation supports parties in negotiating about
requests and offers. For example, the customer can
negotiate the payment method or the delivery date to
be used. The outcome may be an agreement for a
"contract." The final decision of accepting or
rejecting the negotiation is up to the customer.

Delivery supports the delivery of products and
advertisements to interested parties based on several
paradigms (email , push, etc.) For the OPELIX
project we focus on push delivery.

Payment provides an interface to different
payment systems such as Milli cent and SET.

The supporting components (User Profile, Offer
Management, User Access, Security) provide
additional management services for user profiles and
offers, restrict access to the system and ensure the
integrity and security of the platform:

User Access allows the user to access the system
via authentication services provided by the Security
Services component. It provides the top-layer user
interface for any user type, enables the access to the
user interfaces of the other components and
collaborates with some of them to complete their
functionali ty.

Offer Management supports administrators in
managing offers and directories of content producers.
It provides faciliti es to add value to existing content
(for instance, through categorization or improvement
in data presentation layout).

User Profiles stores user data and preferences
such as personal data, list of products recently
acquired, etc. Profiles can be accessed and modified
by the intermediary and the customer.

Security Service offers a range of security related
services to the other components: authentication to
properly identify interacting parties and prove the
origin of products; authorization to control user
access to resources and data; non-repudiation ensures
that parties cannot repudiate the actions they have
performed in the fulfil lment of a contract; and

copyright services for data which cannot be water-
marked (text, programs) [13].

The small plug-in components shown in Figure 4
denominate COTS that could be used with OPELIX.

4.3. Inter-component communication
The components of the OPELIX platform

communicate and cooperate via a common
communication infrastructure. The cooperation
among the components is controlled by the Business
Workflow which executes the user's business model
defined in the Business Offer Language (BOL) [1]
which was defined in the course of the OPELIX
project. The Business Workflow component executes
the workflow describing the structure of interaction
between the intermediary and the other parties
involved in a trade. It activates the other components
of the system when their services are needed
according to the state of the workflow being enacted.
It also keeps track of and updates the status of the
business process.

Two types of communication among the
components inside the OPELIX system can be
distinguished: (1) heterogeneous communication
between different OPELIX components inside one
OPELIX installation and (2) homogeneous
communication between (components of) different
OPELIX installations. This distinction does not
preclude anything about the actual distribution of the
components. The communicating components could
actually reside on different hosts, although they may
belong to one OPELIX installation.

Additionall y communication can be synchronous
or asynchronous depending on the requirements of
the components and the purpose of the
communication. The following sections discuss the
types of communication which are relevant to
OPELIX and the technologies we selected.

4.3.1 Synchronous vs. asynchronous com-
munication

Synchronous communication is used in OPELIX
whenever continuation without the result of an action
is not possible or useful. For example, the DDC
should wait for a content-signing operation if it is
required to send signed content. In synchronous
communication the mapping of requests and replies
is implicit: A requester waits for the reply, so the
reply can only be for that request.

Asynchronous communication is useful i f conti-
nuation without the result of an action is possible or
useful. For example, if the DDC performs a delivery
operation to 10000 subscribers the requester would
not wait for the completion but wants to be notified
upon completion. Asynchronous communication
requires explicit request/reply mapping, e.g., by
means of request IDs.

4.3.2 Heterogeneous communication
Heterogeneous communication denotes commu-

nication between components of different types
inside one OPELIX installation, for example, when
the business workflow requests a delivery from the
DDC. Although frequently communication is not
over a public network, security must be addressed.
For example, not everyone in an organization should
be able to trace all communication such as price
information. Heterogeneous communication can
either be synchronous, for example, when the DDC
requests encryption from the security component, or
asynchronous, for example, the notification of
completion of a requested service.

4.3.3 Homogeneous communication
Homogeneous communication denotes commu-

nication between components of the same type in
two or more OPELIX installations; for example,
communication between the customer payment
component and the intermediary payment component
to settle a payment. Since communication between
two installations typically occurs over the Internet,
network delay, bandwidth, data size, and security
must be taken into account when choosing the com-
munication paradigm. Homogeneous communication
in OPELIX can be synchronous, for example, in the
case of negotiation or contracting, or asynchronous,
for example, in the case of Request and
Matchmaking (RMM) or delivery.

4.3.4 Technologies used in OPELIX
The communication technologies that are used in

OPELIX are: (1) the Java Event Distribution
Infrastructure (JEDI) [2] for intra-site notifications
(asynchronous heterogeneous communication); (2)
Java RMI for service requests and communication
between components of one OPELIX installation
(synchronous heterogeneous communication); (3)
XML via HTTP for homogeneous communication
(between identical components in different OPELIX
installations); (4) all messages are XML documents.
Our decision was based on the following goals: (1)
communication should be as open as possible and
rely on standards; (2) the infrastructure must be
light-weight to be usable on the client-side; (3)
communication must be efficient (large data sizes,
asynchronous where possible, etc.); and (4) the best
communication paradigm for a certain communi-
cation requirement should be used.

The choice of XML-based messages was obvious
since XML is one of the base technologies of
OPELIX. For notifications we wanted to rely on an
existing event-based infrastructure and decided to
use JEDI since it satisfies our requirements, is light-
weight and available from a project partner which
allows us to adopt it to our requirements easily. For
homogeneous communication we decided to use
XML via HTTP because these technologies are
widely used and are open standards which facilit ates

communication between OPELIX systems of
different vendors if they adhere to the communi-
cation standards. Additionall y, it puts minimal re-
quirements on the availabili ty of network support
and security. For heterogeneous communication we
considered RMI, SOAP [14] and XML RPC [16]. On
the basis of an evaluation of SOAP and XML RPC
we decided to use plain RMI. The main reason for
this decision was that SOAP and XML RPC require
considerable implementation efforts by the industrial
project partners while this communication type is
invisible to the outside world.

4.3.5 Communication patterns
Communication among OPELIX components in

one installation is 1-to-1 and 1-to-many. The para-
digm used – client-server, event-based, synchronous
or asynchronous – depends on the requirements of
the communication partners. For example, requesting
a signature check from the security component is
done synchronously in client-server style because the
result of the security operation determines the further
processing. Additionally, asynchronous communica-
tion would impose further security requirements such
as authenticity or replay checks of the reply
messages and mapping replies to requests.

Other operations such as requesting a payment
from a receiver are done asynchronously although
the (third-party) payment protocols used internally
by the payment component may communicate
synchronously with their counterpart. We use
asynchronous communication if possible, so that
requesting components are not blocked unnecessari-
ly. Asynchronous communication in general is
beneficial for long-lasting operations where the
requester can receive a reply later.

We use event-based communication for asynchro-
nous notification of (multiple) components. A
component can subscribe to certain events and will
be notified if a matching event occurs. For example,
a component may request a delivery and multiple
parties may be interested in its completion. So these
components would subscribe to the according event.
This also supports the goal of a highly flexible
architecture because no assumptions on the number
and kind of components present in the system are
made. The only requirement is that a component
should subscribe to the events it is interested in.

In the case of communication between OPELIX
installations three communication partners exist:
producer, intermediary, and consumer. They
communicate in a point-to-point style using the
client-server pattern. Each of them can act as a client
or as a server. For example, in the targeting scenario
a consumer would be a server and a producer would
be a client; in a payment scenario the same consumer
can be the client of the producer. External commu-
nication can be request-reply style, involve sessions,
or even be 1-to-many depending on the purpose.

5. Related work
The area of e-commerce has attracted much

interest recently. eCo and ebXML are the most
prominent projects that are relevant to our work. The
eCo project [4] provides an architecture that will
enable the interoperation of a heterogeneous set of e-
commerce systems. The eCo architecture is not
intended to represent any specific e-commerce
system nor does it try to give a general model for e-
commerce applications. Rather, this architecture is
designed to represent those aspects of an e-
commerce system that contribute to its interaction
with a prospective trading partner. To achieve inter-
operabilit y, the eCo specification does not require
that businesses agree on what they do or how they do
it, it helps them describe what they do. The eCo
architecture is a layered model representing an e-
commerce environment.

ebXML [5] is an ongoing project of the United
Nations (UN/CEFACT) and OASIS, with broad
industrial support. The motivation of the project is to
provide an alternative for systems based on the
Electronic Data Interchange (EDI) standard. The
vision of ebXML is to enable enterprises of any size
to conduct businesses with each other through the
exchange of XML based messages. Although the
project goals are different from OPELIX, there are
some similarities in the approach. ebXML also
defines a mechanism for describing Business
Processes and Information Meta Models. Companies
submit their Trading Partner Profile to a repository,
which enables them to find trading partners. Trading
partners can optionally negotiate possible business
scenarios. If the partners agree on business rules,
they can conduct business electronicall y. The entire
technical documentation of the project is still
unavailable, so a detailed comparison of ebXML and
OPELIX is not possible at the moment.

A comparison of architectures of current e-com-
merce platforms is beyond the scope of this paper. A
detailed analysis and comparison is given in [15].

Currently available e-commerce platforms are not
specifically designed for i-commerce. They can be
used for sell ing information products or services as a
special case. We know of very few systems that
specially focus on trading intangible goods and offer
a similarly rich functionality as OPELIX: Project
MEDIA (Mobile Electronic Documents with
Interacting Agents) [9] aims at building such a
system based on mobile agents. MEDIA defines a
model and a framework for trading digital
documents. The design of the framework focuses on
the protection of the intellectual rights of the
document owner.

6. Conclusions
We have presented the architectural principles of

the OPELIX platform, a representative of an
emerging class of systems dedicated to information
commerce. OPELIX provides an open information

commerce platform that enables enterprises to
produce, sell , deliver, and manage information
products and related services over the Internet. The
OPELIX architecture is open, flexible, customizable,
and extensible. We presented the main components
and communication mechanisms in OPELIX.

OPELIX is an ongoing research project that is
currently in the implementation and integration
phase. The validation of the approach will be done
through case studies in cooperation with our industry
partners.

Acknowledgments
We would like to thank the OPELIX team for

providing a fruitful environment for discussions.

References
[1] Aberer, K., Wombacher, A., A Language for

Information Commerce Processes, to appear in: 3rd

International Workshop on Advanced Issues of E-
Commerce and Web-based Information Systems,
San Jose, Cali fornia, USA, June 21-22, 2001.

[2] Booch, G., J. Rumbaugh, I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley,
Reading, Massachusetts, USA, 1999.

[3] Cugola, C., Di Nitto, E., Fugetta, A., The JEDI
Event-Based Infrastructure and its Application to
the Development of the OPSS WFMS. To appear
in IEEE Transactions on Software Engineering.

[4] eCo, http://www.commerce.net/eco, 2001.
[5] ebXML, http://www.ebxml.org/, 2001.
[6] Hauswirth, M., M. Jazayeri, M. Schneider, A

Phase Model for E-Commerce Business Models
and its Application to Security Assessment,
Proceedings of the 34th Hawaii International
Conference on System Sciences, 2001.

[7] Jacobson, I., G. Booch, J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley,
Reading, Massachusetts, USA, 1999.

[8] Jazayeri, M., I. Podnar, A Business and Domain
Model for Information Commerce, Proceedings of
the 34th Hawaii International Conference on
System Sciences, Maui, Hawaii , 2001.

[9] Konstantas, D., J.-H. Morin, Trading digital
intangible goods: the rules of the game,
Proceedings of the 33rd Hawaii International
Conference on System Sciences, 2000.

[10] Matena, V., Stearns, B., Applying Enterprise
JavaBeans: Component-based Developmnt for the
J2EE Platform, Addion-Wesley, 2001.

[11] OPELIX consortium, OPELIX website,
http://www.opelix.org/, 2001.

[12] Orfali , R., Harkey, D., Client/server programming
with Java and CORBA, John Wiley & Sons, 1998.

[13] Schneider, M., Keinz, T., Proof of Authorship for
Copyright Protection in OPELIX. EVA 2001.

[14] Simple Object Access Protocol (SOAP).
http://www.develop.com/soap/.

[15] Shim, S.S.Y., V.S. Pendyala, M. Sundaram, and J.
Z. Gao, Business-to-Business E-Commerce Frame-
works, IEEE Computer, 33(10), October 2000.

[16] Wallnöfer, H., XML-RPC Library for Java,
http://classic.helma.at/hannes/xmlrpc/.

