An Architecturefor Information Commer ce Systems

Manfred Hauswirth, Mehd Jazayeri,
Zoltan Miklés, Ivana Podrar
{mh, mj, zm, ip} @infosys.tuwien.acat
Distributed Systems Group
Tedhnicd University of Vienna, Austria

Abstract

The increasing use of the Internet in business and
commerce has created a number of new business op-
portunities and the need for supporting models and
platforms. One of these opportunities is information
commerce (i-commerce), a special case of e
commerce focused on the purchase and sale of
information as a commodity. In this paper we present
an architecture for i-commerce systems using
OPELIX (Open Personalized Electronic Information
Commerce System) [11] as an example. OPELIX
provides an open information commerce platform
that enables enterprises to produce, sell, deliver, and
manage information products and related services
over the Internet. We focus on the notion of
information marketplace, a virtual location that
enables i-commerce, describe the business and do-
main model for an information marketplace, and dis-
cuss the role of intermediaries in this environment.
The domain model is used as the basis for the
software architecture of the OPELIX system. We dis-
cuss the characteristics of the OPELIX architecture
and compare our approach to related work in the
field.

1. Introduction

The Internet and the Worldwide Web have
spurred the generation of alarge amount of informa-
tion and made possble its easy distribution over
space time, and in many forms and modes. But the
eae of publishing and the universal avail ability of
information have transformed the Internet into a
complex, even chaotic environment. Due to an in-
creasingly large number of information sources the
producers and padentia users of information are dis-
conneded with no natural way of finding out about
ead other. Moreover, the users of information face
another substantial problem: once the required in-
formation source is locaed, there is no simple way
of asesdng its dependability. Conversely, informa-
tion providers are discontent with their means of
reading potential customers.

As a solution to these problems we ewision an
information marketplace, a virtual locaion where
providers offer information and services as goods

Eli sabetta Di Nitto Andreas Wombadher
dinitto@el et.polimi.it wombach@darmstadt.gmd.de
CEFRIEL IPSI, GMD
Milano, Italy Darmstadt, Germany

and customers can find, evaluate and buy the desired
information. In this context, information is the mm-
modity being traded. Serviceis the facili ty offered to
the user and performed by a service provider.

The information marketplace is an environment
for information commerce (i-commerce). |-com-
merceisaspeda case of e-commercefocused on the
purchase and sale of information. In i-commerce
terms, information is considered a product that can
be represented as bits of data (e.g., weaher forecasts,
daily news, stock quotes, etc.). Information products
are intangible and have no physicd presence |-
commerce is aso known as “trading of intangible
goods’ [9]. Yet, information products have intrinsic
value and may be traded just as tangible goods.
Compared to tangible products, they are wstly to
produce but cheg to reproduce It is easy to
redistribute and update such products. This implies
that copyright issues become extremely important
and require spedal consideration.

The information marketplace offers a setting for
the introduction of new innovative services. In such
environment we envision the growth of intermediar-
ies, business adors that offer services to bah cus-
tomers and providers. Seach engines are a very
simple form of intermediary: they help customersin
finding providers. Portal sites are another kind of
intermediary: they clasdfy providers and help
customers in searching based on some dasdficaion.
We envision many other services that intermediaries
may perform. Indeed, apossbly unlimited number of
intermediaries may exist, each adding value to an
information product, or performing a service for ei-
ther customer and/or provider.

In this paper we present the requirements of an in-
formation marketplace by defining a domain model
that identifies business adors, and products and
services provided by spedfic adors. We use the do-
main model as a starting point for designing the a-
chitedure of an information marketplace software
system. Next we present the dharaderistics of the
OPELIX architedure, and dscuss its design and
implementation dedsions. Finally, we discuss and
compare the OPELIX architedure with related ini-
tiatives and platforms. The paper is organized as
follows: Sedion 2 discusses the role of intermediar-
ies in the information marketplace In sedion 3 we

" This work was supported in part by the European Commission under contract 1ST-1999-10283, projed OPELIX (Open Personalized

Electronic Information Commerce System).

describe the domain model that was used as the basis
of the OPELIX architedure. OPELIX’s architecura
principles are presented and discussed in Sedion 4.
Sedion 5 relates our approach to ather work in the
field. The final sedion summarizes lesons leaned
and listsissues for further work.

2. Intermediary

By examining a simple transadion on the Internet
that conforms to an information marketplace
businessprocess we @n identify a customer looking
for a product and a provider offering that product.
After locating the provider the austomer sends a re-
guest and waits for provider's resporse. This smple
businesstransadion was used since the ealy days of
Web. However, the adivity "find a provider" has
significantly changed due to tremendous Internet
growth. To ded with the overwhelming increase in
the number and variety of providers, a number of
services appeaed that help the austomer in finding
providers. Seach engines and patals are examples
of such services. To take into acoount the role of
such sites in the interadions between customers and
providers, we introduce another information market-
place ator cdled intermediary. The intermediary, in
this case, adopts the adivity formerly performed by
the austomer and enables smple discovery of poten-
tial providers. Finding a provider is only one of the
services an intermediary may perform. We envision
the emergence of new intermediary services that will
bemme part of the information marketplacebusiness
processes.

By concentrating on the role of the intermediary,
we @n identify a number of services that either exist
today or may be offered as new businesses. To help
analyze intermediary services further, we can clas-
sify intermediaries in terms of their services. We
have identified the following classes of intermediar-
ies[8]:

Classifying (e.g., portals): these intermediaries
provide a dassficaion of available providers or
products.

Filtering: these services provide arefined view of
existing providers or products. For example, a digest
service ould provide a summary of information
from other sites or a speddizaion service ould
provide spedfic information available from many
providers.

Qualifying: such intermediaries provide aqualifi-
cdion service For example, a particular service
could rate the reliability of information products
avail able from other providers. Such a service ®ould
be used by customers to choose what providers they
use and by providersto improve their services.

Authenticating: these intermediaries authenticate
the identities of customers, providers, and products.

Combining: these intermediaries combine the in-
formation products available from other providers.
For example, an "evening planning service' could
provide information about the starting time of an

opera performance, the traffic conditions around the
theaer, and recommended restaurants.

Brokering (e.g., seach engines): these intermedi-
aries help customers and providersfind ead other.

Mediating: These intermediaries help customers
and providers to conduct a business For example, a
mediator could dffer anonymous transadions that
the austomer and the provider do not lean one a-
other's identity. The difference between a broker and
a mediator is that the broker helps in identifying
customers and providers but the mediator helps in
carying out the process of a transadion between a
customer and a provider.

These intermediary services are not only useful
functions but they also enable more sophisticated
business models for enterprises. For example, indi-
rect commerce is a business model where affiliate
companies utilize web sites and/or push systems to
get in touch with possible astomers. Added-value
commerce is a model where businesses il higher-
level information products by filtering or combining
information sources.

3. Information marketplace domain
model

The domain model identifies business actors
involved in marketplace business processes,
describes their interadions, and dscovers artifacts
that are used and produced during interadions. We
have two major goals for our domain modeling
procedure: to understand the mntext of information
marketplace and to identify potentia intermediary
services in the information marketplaceenvironment.

Domain modeling is the initial step of the soft-
ware development process that enables the under-
standing of the system environment and is primarily
used for defining terms and enabling developer
communicaion and cooperation. We have dedded to
employ the use cae driven modeling approach de-
fined in [7] as a "technique for understanding the
business processes of an organizaion." In our case
the organizaion is the information marketplace

The use cae driven modeling approach employs
UML [2] use cae diagrams for describing the con-
text of the information marketplace The use @ase
diagram associates information marketplace ators
and a number of use caes. Use caes are usualy
described by UML adivity diagrams or sequence
diagrams that model organizaiona business
proceses. They list the interading adors, their
adivities, and artifacts produced during the business
process providing the input for the construction of
the dass diagram which communicaes the domain
model in a programmer-like style.

The reminder of this sdion presents the use cae
diagram and the dass diagram that comprise the in-
formation marketplace domain model. The detail ed
description of the modeling procedureisgivenin[8].

3.1. Usecasediagram

Figure 1 depicts the use cae diagram that
describes the information marketplace ontext. The
diagram relates a customer, a provider, and an
intermediary performing a generic service

In our model an intermediary performs ervices
for both customer and provider, and ads as a
connedion between them. A customer uses the
services of an intermediary to simplify interadions
with providers. We model this interadion by the use
case Perform service. For example, an intermediary
can help a austomer to find a dependable provider by
advertising products on behalf of a provider.

Supply product
7
S

Custome, &
&

<include>
Supply product }----> Find provider

Find)

Intermediary

Figure 1. Use cae diagram relating the adors
of the information marketplace

After locating the provider, the astomer can
choose to conduct business diredly with the
provider. This stuation is modeled by the use cae
Supply product that conneds customer and provider.
A customer may, however, communicae only with
an intermediary. In this case, the intermediary
delivers products and handles payment on behalf of
the provider. Thus intermediary service grows in
complexity: The intermediary interads with the
customer and performs a service but aso interads
with the provider. We model the interadion with the
Supply product use ca&e. The two remaining wse
cases Find provider and Find intermediary model the
initial process of locding providers and
intermediaries.

The most interesting and complex use cae is
Perform service. In this initidl modeling step we
think of it as a generic service The Intermediary can
potentially offer an unlimited number of services.
However, a typicd business process consists of a
combination of the following phases. advertising,
negotiation, ordering, payment, and delivery [6]. The
Intermediary can provide aservice that enables one,
or a owmbination of the listed business phases. For
example, an intermediary can perform advertising on
behalf of aprovider. To be ale to do advertising, the
intermediary neeals a description of provider
products, i.e., a product caaog from the provider. A
provider may, in another scenario, entrust both
advertising and negotiation to an intermediary and
supply the intermediary with the pricing and discount
model that will guide the negotiation process In
another case, an intermediary may offer a number of
payment methods, eg., different micropayment

protocols, as a service, or enable delivery via push
systems. It can also combine products coming from
severa providers and autonomously offer combined
products to end customers. These ae just some of
the examples of posgble intermediary services that
can bemme part of the information marketplace
businessprocesss.

To suppat the business process exeadtion, the
marketplace needs to fadlitate inter-operability. The
exchange of standard messages that are understood
by al business adors is a prerequisite for automatic
communicdion. In an information marketplace the
adors sould be ale to exchange requests, orders,
and dfers to negotiate business terms related to
delivery and payment. They should also be caable
of delivering products to their customers, and
colleding revenue for their services.

3.2. Classdiagram

The dass diagram that represents the domain
model of the information marketplace is given in
Figure 2. It was creded based on the information
aqquired during the use cae analysis.

We ae m@nsidering business proceses of the
information marketplace that relate a number of
business adors. Business relationship is the
aggregation of adors and eledronic documents that
are involved in the business process Customer,
intermediary, and provider are modeled as adors
with changing roles. Classes Request, Offer and
Order model the wmrresponding artifads. They inherit
the properties of the astrad class Document since
these atifads can be regarded as eledronic docu-
ments. Document’'s methods model the adivities
performed by customers, intermediaries, or providers
that change the state of a particular document. An
important part of ead document is the spedfication
of the requested, offered, or ordered information
product. Document is therefore @ciated with
Specification which spedfies product feaures.

Actor is asoociated with Document since an ador
creaes a particular document and sends it to another
ador for analysis. A customer can crede reguests
and oders, a provider credes only offers, while
intermediary may crede requests, offers and orders.

A provider credges and owns a number of
products. An asciation between Provider and
Product models this relationship. Product is
described by its gpedficaion: Product is therefore
asciated with Specification.

The asciation between Intermediary and Service
describes the basic charaderistic of an intermediary:
providing a service Service inherits the properties of
Product. Product’s operations need to be overridden
in Service since the proceses of creaing and
modifying a service ae quite different from those for
creding and modifying a product. The number of
adual services is currently unknown. Advertising,
negotiation, ordering, payment, and delivery are just
examples of potential intermediary services.

Business Relationship cCaZanreeI:t%izr?:n ﬁ
 —] 4 I

creates & owns ->

, | Document Request

 |Bbstate

%create()
%send()

Offer

individual or 1 Actor
organization |- —{&ID

performs

Role

®notify()
Customer
Provider
¥receiveProduct() -
“payBill() Intermediary “sendBill()
%compareOffers()
%chooseProvider() | ®receiveProduct()
SpayBill()

@bill()
%compareOffers()
%chooseProvider()|

provides |1

Service

creates &awns ->
Product

%analyze()
0.* ®accept()
®reject()
®modify()
%®close()

N

Order

isa Tn of

defines requests,
orders, and offers;
— | specifies product
features;

Specification

%create()
®modify()

has

13
%create()
Smodify()
*| ®deliver()

Figure 2: Domain model for the information marketplace

Based on this model, we have oncluded that
communicaion and coordination between business
adors, e.g., customers, providers, and intermediaries,
is the key for the supparting system. To enable such
communicaion, we neel a standard language that
ensures inter-operability. It should enable the ex-
change of requests, offers and orders among business
adors. Each document should contain the informa-
tion regarding involved parties and their roles in the
business process and describe the related informa-
tion product and provided services. It is aso crucial
to enable the execution of the business process
model that comprises predefined adions. It is highly
indeterministic since business dedsions and events
trigger process adions. However, the process must
be guided to comply to predefined business rules,
which makes the supparting infrastructure design
even more complex.

The @mpasition of intermediary services is the
other premier requirement that the supparting system
needs to address For example, an intermediary may
dedde to provide avertising and negotiation to its
customers. It therefore neads only those parts of the
system that provide the desired functionality without
losing inter-operabili ty.

The presented damain model and its analysis have
guided the definition of architecural principles for
the OPELIX platform. These principles and the
architedure ae aldressed in the following sedion.

4. Architecture

The domain model [8] and the phases model [6]
can be mapped onto a component-oriented architec
ture eaily which resulted in the current OPELIX

architecture. We tried to foll ow the domain model as
far as possble but of course had to adjust the design
to the spedfic neals of our industrial partners.

4.1. Design goals

The main design goals were component-orienta
tion and inter-operability. Component-orientation
was targeted in two ways. We wanted to enable the
use of existing components off-the-shelf (COTS) and
make OPELIX itself component-oriented to allow
OPELIX usersto configure the platform acording to
their requirements.

The suppart for COTS is criticd since we did not
want to re-implement existing functionality, for
example payment services such as Millicent or SET,
but exploit existing components. This led to asimple
architedural pattern for the integration of COTS as
shown in Figure 3 for the payment component.

payment framework

[MilliCent

SET

Figure 3: Framework approach of OPELIX

For every component (or service) which uses
COTS the framework provides an external interface
for other OPELIX components and an internal inter-
faceto the components used in a spedfic configura-
tion. This allows us to abstrad from the spedfic in-
terfaces of concrete components (such as concrete
payment services) and dffer a uniform interface for

other components. Thus other OPELIX components
only have to ded with a single interface for every
component regardlessof the COTS used.

At first we were ansidering to base our frame-
work on existing component frameworks such as
Enterprise JavaBeans [10] or CORBA [12]. How-
ever, we had to step badc from this approach because
we wanted to use the framework both on the dient
side and at the server side. At the server (provider)
side typicdly enough computing and networking
resources are avallable and (expensive) licenses are
aff ordable. On the dient side, however, we wanted to
have as little prerequisites as possble that an
installation would have to satisfy. It turned out that
our requirements are much simpler than the wedth
of functionalities offered by component frameworks,
so we dropped this approach. Now the achitecture
requires Java and a web server at the server side
(plus required COTS), and Java and a web browser
at the dient side.

The second main goal for the design of the OPE-
LIX architecture was to have aflexible and extensi-
ble framework that could be eaily tailored to the
configurations needed by the user. For example, if a
site did not want to suppart payment or advertising
we do not require it to install unnecessary compo-
nents. In contrast, we wanted to have avery minimal
set of components to be required and allow a user to
add further components as neaded by higher busi-
ness applicaion or to delegate such functionalities to
intermediaries [6].

4.2. The OPELIX architecture

On the basis of the &ove mnsiderations we de-
veloped an architedure cmmposed o loosely-coupled
cooperating components, communicating over a
common communicaion infrastructure, which is
intended to suppart intermediaries to establish a vir-
tual marketplace where (1) information from provi-

Business Workflow

Targeting
Matchmaking
Negotiation

w w
Request and

i Delivery and i

ders is offered to customers; (2) intermediaries can
(re-)combine/enhance these products to produce new
ones which are dso doffered; (3) which alows
customers to easily find and buwy the data he/she is
looking for; and (4) which enables providers to de-
legate the sale of his/her products to intermediaries.

The OPELIX architedure shown in Figure 4
(maximum configuration for an intermediary) uses a
problem-oriented amalgamation of well-established
architedural styles. This means that we have alopted
and used those achitedural styles that best address
the concrete requirements.

The unifying principle of the whole OPELIX ar-
chitedure is component-orientation: Every compo-
nent should be exchangeéble if its interface spedfi-
caions are obeyed. This component-based approach
fadlitates the distribution of components in a net-
work and supparts integration of third-party compo-
nents. Additionally, it provides a simple way for con-
figurations tail ored to the users needs and adjusts the
size ad functionality of a site's installation to the
requirements and resources. OPELIX components
are independent of each other and can diredly re-
guest services from the other components inside the
same install ation.

OPELIX provides a set of services that fulfill
functional and non-functional requirements of i-
commerce gplicaions. Each component is devoted
to acaomplish a spedfic functionality and may rely
upon or interad with other components of the achi-
tedure. The components have been identified on the
basis of user requirements that where expressed as
UML use caes and descriptions by the industrial
partnersin the OPELIX projed.

The functional components (Targeting, Request
and Matchmaking, Negotiation, Payment, Delivery
and Dissemination) implement the phases described
in[6]:

User Profiles

Offer
Management

User Access

Security Services

@

Dissemination

Figure 4: The OPELIX architedure

Targeting provides advertisements and offers to
potential customers based on their previous adions
or their preferences (user profile). It lets the
intermediary define the rules to be used in marketing
campaigns and relies on the Delivery and
Dissmination component to transmit these data to
the targeted customers. Additionally it provides the
User Accesscomponent with the advertisements that
might be interesting for a astomer when the
customer accesses the OPELIX system.

Request and Matchmaking alows the user to
define arequest as a set of constraints on product
charaderistics. The user can indicate which
constraints are negotiable. On the basis of such
spedficaions this component seaches through
available products and matches requests to dffers.
The seaching process may span over different
producers sites, depending on the way content is
managed and on the type of the request.

Negotiation supparts parties in negotiating about
requests and dffers. For example, the austomer can
negotiate the payment method a the delivery date to
be used. The outcome may be an agreement for a
"contrad.” The final dedsion of acceting or
rejeding the negotiation is up to the austomer.

Delivery suppats the delivery of products and
advertisements to interested parties based on severa
paradigms (email, push, etc.) For the OPELIX
projed we focus on push delivery.

Payment provides an interface to dfferent
payment systems such as Milli cent and SET.

The supparting components (User Profile, Offer
Management, User Acocess Security) provide
additional management services for user profiles and
offers, restrict acass to the system and ensure the
integrity and seaurity of the platform:

User Access all ows the user to accessthe system
via aithentication services provided by the Security
Services component. It provides the top-layer user
interfacefor any user type, enables the accesto the
user interfaces of the other components and
collaborates with some of them to complete their
functionality.

Offer Management suppats administrators in
managing offers and diredories of content producers.
It provides fadliti es to add value to existing content
(for instance, through caegorizaion or improvement
in data presentation layout).

User Profiles stores user data and preferences
such as personal data, list of products recently
aqquired, etc. Profiles can be accesd and modified
by the intermediary and the customer.

Security Service offers a range of seaurity related
services to the other components: authenticaion to
properly identify interading parties and prove the
origin of products, authorizaion to control user
accessto resources and data; non-repudiation ensures
that parties cannot repudiate the adions they have
performed in the fulfillment of a ontrad; and

copyright services for data which cannot be water-
marked (text, programs) [13].

The small plug-in components shown in Figure 4
denominate COTS that could be used with OPELIX.

4.3. Inter-component communication

The @mponents of the OPELIX platform
communicade ad cooperate via a ©mmon
communicdion infrastructure. The @operation
among the components is controlled by the Business
Workflow which exeautes the user's business model
defined in the Business Offer Language (BOL) [1]
which was defined in the murse of the OPELIX
projed. The Business Workflow component exeautes
the workflow describing the structure of interadion
between the intermediary and the other parties
involved in atrade. It adivates the other components
of the system when their services are nealed
acording to the state of the workflow being enaded.
It dso keeps tradk of and updates the status of the
businessprocess

Two types of communication among the
components inside the OPELIX system can be
distinguished: (1) heterogeneous communication
between different OPELIX components inside one
OPELIX installation and (2) homogeneous
communicdion between (components of) different
OPELIX installations. This distinction does not
predude anything about the adual distribution of the
components. The communicaing components could
adually reside on different hosts, although they may
belongto one OPELIX instalation.

Additionally communication can be synchronous
or asynchronous depending on the requirements of
the @mponents and the purpose of the
communicdion. The following sedions discuss the
types of communicaion which are relevant to
OPELIX and the technologies we seleded.

4.3.1 Synchronous vs. asynchronous com-
munication

Synchronous communicaion is used in OPELIX
whenever continuation without the result of an adion
is not possble or useful. For example, the DDC
should wait for a mntent-signing ogeration if it is
required to send signed content. In synchronous
communicédion the mapping of requests and replies
is implicit: A requester waits for the reply, so the
reply can only be for that request.

Asynchronous communicaion is useful if conti-
nuation without the result of an adion is possble or
useful. For example, if the DDC performs a delivery
operation to 10000 subscribers the requester would
not wait for the completion but wants to be notified
upon completion. Asynchronous communication
requires explicit request/reply mapping, eg., by
means of request IDs.

4.3.2 Heterogeneous communication

Heterogeneous communication denotes commu-
nicaion between components of different types
inside one OPELIX instalation, for example, when
the business workflow reguests a delivery from the
DDC. Although frequently communication is not
over a public network, security must be aldressed.
For example, not everyone in an organizaion should
be ale to trace 8 communicaion such as price
information. Heterogeneous communicdion can
either be synchronous, for example, when the DDC
requests encryption from the security component, or
asynchronous, for example, the notificaion of
completion of arequested service

4.3.3 Homogeneous communication

Homogeneous communicaion denotes commu-
nicaion between components of the same type in
two o more OPELIX ingtalations; for example,
communicaion between the astomer payment
component and the intermediary payment component
to settle a payment. Since @mmunicaion between
two installations typicdly occurs over the Internet,
network delay, bandwidth, data size, and security
must be taken into account when choaosing the com-
munication paradigm. Homogeneous communication
in OPELIX can be synchronous, for example, in the
case of negotiation or contrading, or asynchronous,
for example, in the @se of Request and
Matchmaking (RMM) or delivery.

4.3.4 Technologies used in OPELIX

The communication technologies that are used in
OPELIX are: (1) the Java Event Distribution
Infrastructure (JEDI) [2] for intra-site notificaions
(asynchronous heterogeneous communicaion); (2)
Java RMI for service requests and communication
between components of one OPELIX installation
(synchronous heterogeneous communication); (3)
XML via HTTP for homogeneous communication
(between identicd components in different OPELIX
installations); (4) al messges are XML documents.
Our dedsion was based on the following goas: (1)
communicaion should be & open as possble and
rely on standards; (2) the infrastructure must be
light-weight to be usable on the dient-side; (3)
communicaion must be dficient (large data sizes,
asynchronous where possble, etc.); and (4) the best
communicaion paradigm for a cetain communi-
caion requirement should be used.

The doice of XML-based messages was obvious
since XML is one of the base technologies of
OPELIX. For notificaions we wanted to rely on an
existing event-based infrastructure and dedded to
use JEDI sinceit satisfies our requirements, is light-
weight and available from a projed partner which
alows us to adopt it to our requirements easily. For
homogeneous communicaion we dedded to use
XML via HTTP becaise these technologies are
widely used and are open standards which fadlit ates

communicdion between OPELIX systems of
different vendors if they adhere to the communi-
cdion standards. Additionally, it puts minimal re-
quirements on the availability of network suppart
and seaurity. For heterogeneous communication we
considered RMI, SOAP [14] and XML RPC [16]. On
the basis of an evaluation of SOAP and XML RPC
we dedded to use plain RMI. The main reason for
this dedsion was that SOAP and XML RPC require
considerable implementation efforts by the industrial
projed partners while this communication type is
invisible to the outside world.

4.3.5 Communication patterns

Communication among OPELIX components in
one installation is 1-to-1 and 1-to-many. The para
digm used — client-server, event-based, synchronous
or asynchronous — depends on the requirements of
the communication partners. For example, requesting
a signature chedk from the seaurity component is
done synchronoudly in client-server style because the
result of the security operation determines the further
processng. Additionally, asynchronous communica
tion would impase further seaurity requirements such
as authenticity or replay checks of the reply
messages and mapping replies to requests.

Other operations such as requesting a payment
from a recaver are done aynchronously although
the (third-party) payment protocols used internally
by the payment component may communicae
synchronously with their counterpart. We use
asynchronous communication if possble, so that
requesting components are not blocked unnecessari-
ly. Asynchronous communicaion in general is
beneficial for long-lasting operations where the
requester can recave areply later.

We use event-based communicaion for asynchro-
nous notificaion of (multiple) components. A
component can subscribe to certain events and will
be notified if a matching event occurs. For example,
a mmponent may request a delivery and multiple
parties may be interested in its completion. So these
components would subscribe to the acording event.
This aso suppats the goal of a highly flexible
architecture becaise no assumptions on the number
and kind of components present in the system are
made. The only requirement is that a component
should subscribe to the eventsit isinterested in.

In the cae of communicaion between OPELIX
installations three @mmunicaion partners exist:
producer, intermediary, and consumer. They
communicae in a point-to-point style using the
client-server pattern. Each of them can ad as a dient
or as a server. For example, in the targeting scenario
a awnsumer would be aserver and a producer would
be a dient; in a payment scenario the same cnsumer
can be the dient of the producer. External commu-
nicaion can be request-reply style, involve sessions,
or even be 1-to-many depending on the purpose.

5. Related work

The aea of e-commerce has attraded much
interest recently. eCo and ebXML are the most
prominent projeds that are relevant to our work. The
eCo projed [4] provides an architedure that will
enable the interoperation of a heterogeneous %t of e
commerce systems. The eCo architedure is not
intended to represent any spedfic e-commerce
system nor does it try to give ageneral model for e-
commerce gplicaions. Rather, this architedure is
designed to represent those apeds of an e
commerce system that contribute to its interadion
with a prospedive trading partner. To achieve inter-
operability, the eCo spedficaion does not require
that businesses agreeon what they do a how they do
it, it helps them describe what they do. The eCo
architedure is a layered model representing an e
commerce environment.

ebXML [5] is an ongoing projed of the United
Nations (UN/CEFACT) and OASIS, with broad
industrial suppart. The motivation of the projed isto
provide a dternative for systems based on the
Electronic Data Interchange (EDI) standard. The
vision of ebXML is to enable enterprises of any size
to conduct businesses with ead other through the
exchange of XML based messages. Althoudh the
projed goals are different from OPELIX, there ae
some similarities in the gproach. ebXML aso
defines a mechanism for describing Business
Processes and Information Meta Models. Companies
submit their Trading Partner Profile to a repaository,
which enables them to find trading partners. Trading
partners can optionally negotiate possble business
scenarios. If the partners agree on business rules,
they can conduct business eledronicdly. The entire
technicd documentation of the projea is dill
unavail able, so a detail ed comparison of ebXML and
OPELIX isnot possble & the moment.

A comparison of architedures of current e-com-
merce platforms is beyond the scope of this paper. A
detail ed analysis and comparison is givenin [15].

Currently avail able e-commerce platforms are not
spedficdly designed for i-commerce They can be
used for selling information products or services as a
speda case. We know of very few systems that
spedally focus on trading intangible goods and offer
a similarly rich functionality as OPELIX: Projed
MEDIA (Mobile Eledronic Documents with
Interading Agents) [9] aims at building such a
system based on mobile agyents. MEDIA defines a
model and a framework for trading digital
documents. The design of the framework focuses on
the protedion of the intelledua rights of the
document owner.

6. Conclusions

We have presented the achitedural principles of
the OPELIX platform, a representative of an
emerging class of systems dedicated to information
commerce. OPELIX provides an open information

commerce platform that enables enterprises to
produce, sell, deliver, and manage information
products and related services over the Internet. The
OPELIX architedure is open, flexible, customizable,
and extensible. We presented the main components
and communicaion mechanismsin OPELIX.

OPELIX is an ongoing reseach projed that is
currently in the implementation and integration
phase. The validation of the gproach will be done
through case studies in cooperation with our industry
partners.

Acknowledgments
We would like to thank the OPELIX team for
providing afruitful environment for discussions.

References

[1] Aberer, K., Wombadher, A., A Language for
Information Commerce Processs, to appea in: 3
International Workshop on Advanced Isaues of E-
Commerce and Web-based Information Systems,
San Jose, California, USA, June 21-22, 2001.

[2] Booch, G., J. Rumbaugh, |. Jacbson, The Unified
Modeling Language User Guide, Addison-Wesley,
Reading, Massachusetts, USA, 1999.

[3] Cugola, C., Di Nitto, E., Fugetta, A., The JEDI
Event-Based Infrastructure and its Applicdion to
the Development of the OPSSWFMS. To appea
in IEEE Transadions on Software Engineeing.

[4] eCo, http://www.commercenet/em, 2001

[5] ebXML, http://lwww.ebxml.org/, 2001.

[6] Hauswirth, M., M. Jazayeri, M. Schneider, A
Phase Model for E-Commerce Business Models
and its Application to Seaurity Assessment,
Procealings of the 34" Hawaii International
Conference on System Sciences, 200L.

[7] Jaaobson, I., G. Booch, J. Rumbaugh, The Unified
Software Development Process Addison-Wesley,
Realing, Massachusetts, USA, 1999.

[8] Jazayeri, M., |. Podnar, A Business and Domain
Mode for Information Commerce, Procealings of
the 34" Hawaii Internationa Conference on
System Sciences, Maui, Hawaii, 2001.

[9] Konstantas, D., J-H. Morin, Trading dgital
intangible goods. the rules of the game,
Procealings of the 33¢ Hawaii International
Conference on System Sciences, 2000.

[10] Matena, V., Steans, B., Applying Enterprise
JavaBeans. Comporent-based Developmnt for the
J2EE Platform, Addion-Wesley, 2001.

[11] OPELIX consortium, OPELIX
http://www.opelix.org/, 2001.

[12) Orfdi, R., Harkey, D., Client/server programming
with Java and CORBA, JohnWiley & Sons, 1998.

[13] Schneider, M., Keinz, T., Proof of Authorship for
Copyright Protedion in OPELIX. EVA 2001.

[14 Simple Objed Access Protocol (SOAP).
http://www.devel op.com/soap/.

[15] Shim, SS.Y., V.S. Pendyala, M. Sundaram, and J.
Z. Gao, Businessto-Business E-Commerce Frame-
works, IEEE Computer, 33(10), October 2000.

[16] Wallnéfer, H., XML-RPC Library for Java,
http://classc.helma.at/hannes/xmirpc/.

website,

