
On P2P Collaboration Infrastructures

Manfred Hauswirth, Ivana Podnar
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Stefan Decker
Digital Enterprise Research Institute

National University of Ireland
University Road, Galway, Ireland

Abstract
BSCW [8] and Groove [10] have become the two de-

facto standards for collaboration over the Internet. They of-
fer a wealth of functionalities, support a variety of possible
collaboration styles, and are applied frequently in research
and business projects. While being useful and powerful for
standard scenarios, they suffer from some problematic as-
pects if support for distributed ad-hoc and mobile collabo-
ration is needed. Both are centralized systems which require
the setup and maintenance of a server. Setting up such an
infrastructure for short-term and ad-hoc collaboration of
mobile users is not feasible since it requires the infrastruc-
ture to be in place and configured a-priori, which is costly
in terms of hardware, software, and time. Thus they are not
very adequate for flexible, short term collaborations, a gen-
uine building block of many light-weight distributed mobile
collaboration scenarios. In this paper we discuss how P2P
approaches could be applied to remedy these shortcomings
and to what extent existing technology can already be ap-
plied “out of the box.”

1. Introduction
Key characteristics of distributed mobile collaboration

are the requirements for flexible interaction styles among
users, and ubiquitous mobile access to resources and col-
laborators. Server-based applications can be applied here
and work very well in practice. However, they do this at a
certain cost in the literal sense. Setting up a BSCW [8] or a
Groove [10] server is expensive in terms of time, costs for
software and hardware, and especially because continuous
administration and maintenance is necessary. In many set-
tings, for example, at project meetings, trade fairs, or con-
ferences, this is to much of an overhead, and a more flexible
support for short-term and ad-hoc collaboration is required
that takes into account user mobility. Users want to collab-
orate at a meeting but, on the other hand, may want to keep
up the collaborations at their home base while having the
data they carry with them accessible to entitled collabora-
tors. These requirements call for a more flexible support for
collaboration which additionally should be able to rely on

less infrastructure which is potentially heterogeneous. This
may seem as a contradiction, but in fact in such mobile col-
laboration scenarios users usually require less sophisticated
support as long as their basic needs are satisfied. The ex-
isting server-based solutions are often too heavy in terms of
functionalities as most of the time mobile users only require
archival storage and sharing of documents, search for doc-
uments and users, and basic communication (active and re-
active). Additionally, the issue of possibly limited function-
ality of mobile devices has to be taken into account which
prevents the use of sophisticated platform services beyond
these basic needs.

In this paper we argue that collaboration needs to get
more flexible, make use of existing resources provided by
the participants, should be easier to set up, and support vir-
tual organizations and teams collaborating for limited time
spans. As this implies that teams can rely on pre-existing
infrastructure only to a limited extent, we believe that P2P
systems have a lot to offer in this context as they specifically
target the use of resources “at the edge” of the network,
i.e., resources provided by the users of a system themselves,
and require minimal additional infrastructure. On the other
hand, they may introduce new problems that do not exist in
the server-based solutions since they are not as mature and
a number of problems in P2P still awaits being solved.

In terms of supported functionality we take a bottom up
approach and try to address the basic collaboration needs
first: distributed storage, distributed search to discover in-
formation, self-organized setup of the infrastructure, man-
agement of simple (un-)structured data with known seman-
tics, efficient and flexible communication taking into ac-
count user mobility, and efficient dissemination of notifi-
cations according to current user needs.

A few other projects have defined similar requirements
and try to address them. Croquet [14] is an open-source
system which aims to support large-scale collaboration and
resource sharing among large numbers of users. Croquet
users have the ability to create and modify a personal infor-
mation space and create fully dynamic connections to any



other Croquet spaces and network-deliverable information
resources (such as the WWW). Croquet is also supposed
to support transactions, provide real-time synchronization
and communication, sophisticated GUIs, etc. Thus it re-
quires quite elaborate infrastructures, though they claim to
follow a P2P approach. In contrast to Croquet our goal is
to be light-weight with minimal resource requirements to
be able to provide P2P collaboration support within reason-
ably short time and add new functionalities incrementally
based on user feedback. In this paper we sketch an architec-
ture for P2P collaboration in heterogeneous environments.
A related architecture is defined in [7] where the authors
define a P2P-based architecture for distributed and mobile
collaborations, but in contrast to ours, target ad-hoc usage
scenarios.

2. Scenarios and Requirements
Collaboration scenarios have recently been enriched by

the proliferation of mobile devices with high-bandwidth
network connectivity. Worker and team mobility has
reached a level at which flexible and simple setup of pro-
visional teams is a necessity. People who participate in
such teams need instant and ubiquitous access to resources
and services regardless of their current location. Further-
more, they need effective means to communicate and co-
operate with other team members. It must be noted that
teams are today increasingly dynamic and subject to fre-
quent changes.

Let us consider three different collaboration scenarios
covering different time spans: ad-hoc, short-term, and long-
term collaborations. Ad-hoc collaborations offer temporary
support possibly in a limited geographical area, and enable
group members to flexibly interact and communicate with
limited collaboration functionalities. Typical examples are
meetings, conferences, or conventions where people meet,
exchange contacts, ideas, and knowledge, but do not work
together on a common product or to satisfy a mutual goal.
Short-term collaborations cover limited time spans, and en-
able virtual organizations and teams to collaborate in order
to satisfy a mutual objective, e.g., create a project proposal,
jointly work on a paper, or integrate software components.
Such collaborations require knowledge and data exchange,
and are based on a trust relationship between team mem-
bers. Therefore, we assume they can access and utilize com-
mon resources. Long-term collaborations are set up by col-
laborating organizations and teams for longer time periods,
e.g., the duration of a project. As this type involves a longer
time period and the involved people and utilized resources
fluctuate less, it is necessary to offer flexible and versatile
interaction and cooperation capabilities and services. Usu-
ally a centralized infrastructure is used for this type.

A single person may be involved in a set of different col-
laboration scenarios at the same time. First of all, the person

must be able to find and access both required resources and
available services. Resources are, for example, his/her per-
sonal calendar, files stored at the corporate server, or com-
mon team data, while a service can be conference call sup-
port, notification of document changes or collective editing.
Efficient distributed search based on semantic descriptions
of the involved data, users, services, etc. are therefore es-
sential for systems supporting mobile collaborators, as dis-
covery of any type of resources is probably the most basic
service. Moreover, distributed storage, and secure and au-
thenticated access to resources is needed. Efficient, scalable
distributed search (using simple predicates) is already sup-
ported by P2P systems [1, 4, 13, 15], while semantic (struc-
tured) search and higher-level search predicates are being
researched at the moment. Also large-scale distributed stor-
age (“making the Internet your hard-disk”) is still an open
problem under active research [12]. Yet exploring whether
P2P systems can meet the requirements here is important
because if the on-going efforts are successful we are one
step closer to systems that require less or even no a priori
infrastructure.

Next, the person must be able to flexibly interact with
other team members. Therefore, since teams may be subject
to frequent changes, the system needs a team membership
management service which should be augmented by a trust
model. Security issues in distributed systems are largely un-
derstood and standard solutions exits. However, with highly
distributed systems such as P2P systems or social networks
the issue of trust gets central importance as the quality of
interaction depends on the level of trust a party can put into
another. In ad-hoc and short-lived collaborations a person
meets unknown people whose reputation cannot be assessed
a priori. Even with perfect security in place, this cannot be
addressed adequately as security (authenticity, confidential-
ity, non-repudiation, data integrity, standard access control,
etc.) has no means to assess whether a party behaves ac-
cording to the agreed standards. Put simple, security lacks
the “social” aspect, i.e., trust. Thus, a distributed trust-
model and reputation management framework is required
that does not rely on a centralized infrastructure as, for ex-
ample, eBay [2].

Furthermore, expressive group communication models
based on the publish/subscribe interaction style are required
for efficient delivery of notifications to mobile team mem-
bers [11]. Publish/subscribe enables team members to issue
a subscription, i.e., a “permanent query”/filter, and the in-
frastructure delivers the information to the member at the
time the requested information becomes available. For ex-
ample, a team leader may be interested in the editing status
of a document and wants to be notified when the document
status changes. Publish/subscribe is essential for dissemi-
nating alert messages, or urgent notifications requiring im-
mediate action. Assuming a mobile environment where a



single user may have many different access points, pub-
lish/subscribe must rely on the information provided by a
presence service which keeps track of user status and ac-
cess point [6].

Keeping in mind different collaboration scenarios, we
can examine different technological strategies for providing
support for collaboration: a standard centralized solution,
a pure P2P approach, and a mixed model comprising peers
that can rely on some pre-existing infrastructure.

The centralized solution is expensive as it requires con-
tinuous maintenance and relies on centralized collaboration
servers. Typical examples are BSCW and Groove. Taking
into account different time spans and variance in collabora-
tion teams, it seems mainly adequate for long-term collab-
orations.

A pure P2P approach uses a P2P overlay network with-
out need for extra infrastructure or setup since team mem-
bers provide the computers and software, i.e., the peers,
that build up the infrastructure. However, the existing so-
lutions currently only provide efficient search, but are still
not mature enough to enable efficient distributed storage,
higher-level and structured search predicates. Many system
already support simple collaboration among users, typically
via a “chat” metaphor. This approach would be suitable for
ad-hoc and short-term collaborations, but presently can be
considered for supporting ad-hoc scenarios which do not re-
quire high-reliability and availability of resources.

The mixed model seems a feasible intermediate solution
between the centralized and pure P2P approach. It uses a
reliable super-peer network for storage while guaranteeing
data availability (nevertheless, some of the resources may
still only be available if a user is online). This means that
some infrastructure has to be in place and available at all
times, which also creates setup and maintenance costs. The
main question here is who is providing this infrastructure,
and what are the advantages in comparison to the classi-
cal server-based approach. An obvious advantage would
be that P2P systems, and therefore also the super-peer net-
work forming the system backbone, are designed to be self-
organizing, and require minimum administration. It re-
mains to be seen whether such systems can surface, and pro-
vide support for short-term and long-term collaborations.

3. Architecture
Taking into account the pros and cons of the available

technological solutions, it seems feasible and economically
justified to employ P2P technology for building collabora-
tion systems, especially for ad-hoc and short-term scenar-
ios. Therefore, we design an architecture for a P2P-based
collaboration system taking into account the requirements
given in Section 2. We assume that a system uses a P2P
overlay network, either a pure P2P solution, or a super-peer
enhanced P2P overlay. Then a peer in the collaboration sys-

tem would have the architecture shown in Figure 1.

�������

���

�
	

�
�


�
�
�

�
�
��

�
�

�
�
�
	
��
��
�
�
�
�
�
��

�
�

���
���	
���

�
�����

���
���	
���

��	�
����

�����������

���

�	������

�	�������

��������

�������

�������������
������
�
��

 ��������������������

!�������
�
���������"�#��
������"�����
�$

Figure 1. Architecture for P2P collaboration
systems

The architecture is layered comprising transport layer,
peer-to-peer overlay, lower-level services, and higher-level
services with an add-on for device-dependent presentation.
The transport layer provides the basic network communi-
cation between peers. The peer-to-peer overlay on top of
this layer supports basic (self-organization) of nodes, in-
dexing of of data (documents, users, system information,
etc.), and efficient distributed search, either as a pure P2P
solution, or involves a super-peer network to increase re-
source availability. This provides the basic substrate for
the five basic lower-level collaboration services which of-
fer supporting services for building end services for mobile
collaborators. We have identified five basic services: dis-
tributed storage, membership management, distributed trust
management, publish/subscribe, and presence service.

Having these lower-level distributed services in place,
the job of building and deploying various collaboration
tools becomes quite straightforward. Therefore, we assume
that a number of services tailored for different user groups
will be provided as higher-level services, e.g., document
versioning, instant messaging, alerts, or common white-
board. For example, instant messaging comes at nearly no
cost on top of a P2P system.

The last architectural layer has the role of adjusting the
presentation of higher-level services to different terminals
taking into account user preferences. Like in any distributed
system authenticated and secure access management is es-
sential for collaboration systems, and it relates to P2P over-
lay, lower-level and higher-level services.

Let us briefly discuss lower-level services and their re-
lationship to P2P overlay since these represent the most
challenging part of the architecture. The main issues to be
solved by a distributed storage system are data availability,
data consistency, data confidentiality and resilience against
attacks. Data availability means that data always needs to
be available despite offline peers. Thus usually data is repli-
cated or some form of erasure coding1 is used. Replication

1Data is segmented and encoded such that if � out of � parts can be



always comes at the cost of having to provide functional-
ity that ensures consistency among the replicas. Since data
is stored on untrusted peers it must be encrypted to ensure
confidentiality. Moreover, a solution which addresses at-
tacks on the data in the presence of colluding peers has to
be included. As all of these problems are of significant com-
plexity in a large-scale distributed system, no standard sys-
tem exists so far.

Trust and reputation management are at the focus of cur-
rent research in distributed systems. The research commu-
nity has identified this recently as one of the basic build-
ing blocks to enable large-scale distributed systems such as
P2P-based systems, service-oriented computing, and mo-
bile ad-hoc networks. The scale, distribution, and charac-
teristics of these systems dictate that also trust and reputa-
tion needs to be managed in a distributed fashion to avoid
single points of failures. A number of approaches which
integrated well with the P2P paradigm have been proposed
already, for example, [2], but the area is still subject to on-
going research. Membership management on the other hand
comes at very low cost. Group management is a basic prob-
lem P2P systems need to tackle anyway to be able to pro-
vide their service. Putting higher-level semantics on top a
P2P membership service is thus quite straight-forward.

The publish/subscribe (P/S) service enables asyn-
chronous and flexible group communication. It allows
the system to inform interested and available users about
changes in system, availability of new data, etc. To some
extent it can be seen complimentary to the search function-
ality provided by the P2P layer. With the functionalities of
the P2P layer the user can actively send out queries while
the P/S service allows the user to express interests reac-
tively, i.e., “permanent queries.” The presence service keeps
track of the applied terminals and user status taking into ac-
count user-defined restrictions regarding visibility to others.

In the following we will take a more detailed look on
distributed storage (Section 4) and the P/S and presence ser-
vices (Section 5) as they seem to be the hardest ones to ac-
complish in a P2P architecture.

4. Distributed Search and Storage
In this section we take a closer look at current, advanced

P2P technologies to support distributed search and storage.
Distributed search is a prerequisite for distributed storage as
it offers the functionality which is usually provided by a di-
rectory in a standard file system. In the simplest case search
is needed to discover a resource. If a resource is large, then
it may have been split into smaller segments which again
would be stored on arbitrary peers. Thus again distributed

retrieved the original data can be reconstructed.

search is needed to recover all parts to reconstruct the orig-
inal resource. Also when replication comes into play, dis-
tributed search is relevant. It is necessary to discover repli-
cas and provide support to keep them up-to-date. On the
other hand the search mechanism is influenced by the repli-
cation mechanism as the consistency guarantees provided
by the replication mechanism, determine the freshness of
information the search mechanism can return.

Thus having a distributed indexing system at hand en-
ables the discovery and access to any resource in a dis-
tributed system. Additionally these systems typically of-
fer replication and load-balancing for the index information,
i.e., the location of any resource will be found at any time,
but it may not be able to access it if the corresponding peer
is offline. To increase availability of the data, everyone who
has downloaded a resource, of course could again enter it in
the index. This would already provide a very simple notion
of distributed storage, without much consistency guarantees
though.

To clarify functionalities and terminology, it is also im-
portant to stop viewing current P2P systems just as dis-
tributed database systems. If they were, distributed stor-
age would already exist. Someday P2P systems may reach
this stage, but at the moment they are quite a bit away.
Typical P2P systems, such as Napster, Kazaa, eDonkey,
Gnutella [4], or distributed hash tables, such as P-Grid [1],
Pastry [13], or Chord[15], are location systems. They ba-
sically provide a distributed index that can be maintained
in the presence of changing peer populations, node failures,
and network separations. To ensure fault-tolerance they use
replication which is applied to the index, not to the indexed
data itself. Replication of data in large-scale distributed sys-
tems always suffers from the problem that it simply takes to
long to copy/move data among peers.

However, replication is required to ensure data avail-
ability. Simple replication strategies on a per-file basis
scale only for small file sizes up to maybe 100kB. With
larger sizes and just a bit of dynamicity in the system (join-
ing/leaving peers, mobility, etc.) the system would break
down immediately. The distributed index can be used to
track replicas, but the actual data transfer defeats efficiency.
Just think of the situation when the system dynamically de-
cides to replicate a single 10MB file. Then an “unfortu-
nate” person having the data to be replicated on his/her disk
(because the system decided to have a replica on this com-
puter at some earlier time), would suffer as the typical 100-
200KB ADSL uplink would be quite overloaded for some
time. As P2P systems are supposed to be very dynamic,
this would happen very frequently and this strategy is not
possible.

To remedy this situation, distributed archival storage
projects such as OceanStore [12] thus split resources into
“digestible” pieces and distribute them among the peers.



Coding strategies are needed to detect changed pieces, and
the content must be encrypted which comes at the cost that
standard data manipulation operations become very expen-
sive. OceanStore actually tries to solve these problems.
However, it is still a long way to go until an efficient im-
plementation becomes available.

In terms of data manipulation operations, at the moment
P2P systems work very well for read-only or rather static
data sets. When is comes to updates, P-Grid is one of
the very few systems (at least the only distributed hash ta-
ble) that supports this [5]. However, updates in P2P sys-
tems usually mean index updates. In principle, data updates
would be possible based on this functionality by sending no-
tifications to data replicas. Also in Freenet[3] and Gnutella
data updates would be possible in principle because these
systems have intrinsic data replication, which is nearly iden-
tical to the “you download, you become a replica” model.
However, consistency of updates has not been extensively
studied for these systems, so they are theoretically not mod-
eled and understood.

The key question for the distributed storage in a P2P-
based collaboration system thus is, which data should be
replicated. Just replicating all data typically defeats any
distributed scheme since it is of no use to replicate data
that nobody will ever access. Additionally, it is the ques-
tion whether complete consistency is required all the time
or some relaxed model would be tolerable (“better old data
than no data”). We claim that in many scenarios a relaxed
consistency model would suffice. We also claim that many
successful systems do on-demand replication/caching, tol-
erate lack of information, and work with not up-to-data data.
Just take Google for an example, where the average age of
the index data is one month as it takes that long to crawl the
Web. Still, it is very useful. Loosening consistency require-
ments will make the system design a bit different. However,
we think that it would allow us to devise more pragmatic
and simpler designs that will work in practice. In practical
systems it is often the case that people would say consis-
tency is absolutely necessary. Then if they think it over for
some time and check the concrete impacts, they usually find
ways to successfully live with a certain amount of inconsis-
tency.

For a fully decentralized, distributed system, a possible
solution with relaxed consistency could look as follows:
� When a peer downloads data, it becomes a replica, i.e.,

it adds the new location to the index. All data con-
tains a unique ID, so all data can be discovered easily
via the P2P system. The secure distributed generation
of unique IDs is solved (for example in P-Grid). The
index additionally stores a version vector with the lo-
cations (who has which version of the data).

� In case of an update, all replicas are being informed. If
a replica wants to update, it may look for the highest

version via the index and download from any source.
Peers which are not online will learn about the update
when they get online again. The consistency guaran-
tees for such push/pull schemes have already been ana-
lyzed in P2P setting, for example, in [5]. The concrete
policy is subject to user configurations (when, how of-
ten, if at all, only if the user agrees, etc.). The user may
decide to live with a not up-to-date copy or simply in-
validate the local copy.

� Queries always include the version of the found data.
The user may decide what to use. Before using the
data, the user can always perform a quick search and
check whether he/she would access the most recent
data (this is cheap in P2P systems).

� Conflicting updates require manual resolution. In fact
there are no good automatic schemes that always work
as this essentially boils down to the distributed cache
reconciliation problem. Already distributed file sys-
tems like the Andrew file system (AFS) and Coda (its
successor) had this problem 10-15 years ago and still
no universal solution is in sight.

� If data is unavailable (all replicas are offline), the re-
quester can subscribe to the system to be notified when
the data becomes available again (as we have a P/S ser-
vice in the architecture anyway).

Basically the same statements and approaches can be ap-
plied for super-peer-based solutions. The advantages of a
super-peer solution are smaller scale and better availability
characteristics of super-peers. Yet the same problems need
to be addressed as in the case of a pure P2P approach, and,
additionally, it has to be guaranteed that a super-peer infras-
tructure that can be trusted exists.

5. Publish/Subscribe and Presence
Publish/subscribe (P/S) systems offer support for col-

laboration scenarios that deal with ����� communication
with information coming from multiple and heterogeneous
sources and targeting numerous users. P/S provides means
to define expressive subscriptions describing information
and data properties the subscriber is interested in. Subscrip-
tions are used as data filters, because they are matched to
data coming from various sources (publishers) prior to de-
livery to interested destinations (subscribers). A P/S system
provides an efficient service which pushes the data at the
time of its publication to interested subscribers. Commu-
nicating parties, publishers and subscribers, interact asyn-
chronously by generating and consuming short information
items, i.e., notifications. We assume the usage of content-
based and, in particular, context-sensitive subscriptions.

Since the research in the area of P/S systems has so far
mainly focused on optimizations assuming static environ-
ments, a number of open problems and challenges remain



to be addressed to provide efficient solutions for P2P col-
laboration systems. The major challenge for P/S in such
environments is related to the design of efficient routing
strategies that can deal with network changes (“churn”)
while preserving high-expressiveness of subscriptions and
low latency for delivered data. P/S has often been promoted
as adequate for highly dynamic mobile environments since
it enables loosely-coupled communication adaptable to a
changing number publishers and subscribers. Nevertheless,
research in this area has just recently recognized open is-
sues introduced by mobile environments [9]. Furthermore,
most systems assume a fixed reliable network of servers as
a backbone, connecting publishers to subscribers which we
actually want to avoid as much as possible. Routing al-
gorithms typically utilize delivery trees over this backbone
with sophisticated procedures for notification filtering.

P2P systems offer interesting properties P/S systems
could exploit. The goal is to provide “infrastructure-less”
P/S systems on top of P2P systems, i.e., a P/S overlay on top
of a P2P overlay. However, currently there are no P/S sys-
tems that utilize P2P characteristics, such as efficient rout-
ing, redundancy, and load balancing, to build flexible and
efficient P/S solutions. P2P could be used to maintain a dis-
tributed index of active subscriptions, but the question re-
mains how to match a published notification to the existing
subscriptions in the index and how to build delivery trees
based on P2P systems. These and related questions are sub-
ject of ongoing research.

Presence Service. Presence service maintains and of-
fers information on users’ presence and contact informa-
tion, i.e., whether a user is on-/offline and how to contact
the user. This includes the current user communication ca-
pabilities and preferences with respect to the applied ter-
minal, application, and user state. Furthermore, a user can
define a default communication point which is activated in
case the current presence information is unavailable.

P/S is the natural interaction style for the presence ser-
vice. Users providing information about their presence are
presence publishers, and users interested in presence infor-
mation are presence subscribers. Therefore, presence im-
plementation can largely rely on an existing P/S implemen-
tation taking into account an extension related to user pri-
vacy. In other words, users need to be able to grant access
to their presence information. Furthermore, the update and
retrieval of this information must be secured and authenti-
cated.

6. Conclusions
In this paper we have argued that light-weight infras-

tructures are required to support short-lived and ad-hoc col-
laboration in dynamic and mobile environments. We have
presented a P2P-based architecture and discussed to what
extent existing technologies can be exploited in the imple-

mentation. We are convinced that P2P-based collaboration
is a paradigm that meets the requirements of users, but there
is still a lack of enabling technologies which have to be re-
searched and implemented.

References
[1] K. Aberer. P-Grid: A self-organizing access structure for

P2P information systems. In Proceedings of the Sixth In-
ternational Conference on Cooperative Information Systems,
2001.

[2] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-
Peer Information System. In Proceedings of the 10th Interna-
tional Conference on Information and Knowledge Manage-
ment (2001 ACM CIKM), pages 310–317. ACM Press, 2001.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A Distributed Anonymous Information Storage and Retrieval
System. In Designing Privacy Enhancing Technologies: In-
ternational Workshop on Design Issues in Anonymity and
Unobservability, 2001.

[4] Clip2. The Gnutella Protocol Specification v0.4 (Docu-
ment Revision 1.2), Jun. 2001. http://www9.limewire.com/
developer/gnutella protocol 0.4.pdf.

[5] A. Datta, M. Hauswirth, and K. Aberer. Updates in
Highly Unreliable, Replicated Peer-to-Peer Systems. In In-
ternational Conference on Distributed Computing Systems
(ICDCS), 2003.

[6] M. Day, J. Rosenberg, and H. Sugano. A Model for Presence
and Instant Messaging, February 2000. RFC 2778. http://
www.ietf.org/rfc/rfc2778.txt.

[7] S. Dustdar and H. Gall. Towards a Software Architecture for
Distributed and Mobile Collaborative Systems. In 26th In-
ternational Computer Software and Applications Conference
(COMPSAC 2002), 2002.

[8] F. FIT and O. S. GmbH. BSCW (Basic Support for Cooper-
ative Work), 2005. http://bscw.fit.fraunhofer.de/.

[9] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis. Dissemi-
nating information to mobile clients using publish/subscribe.
IEEE Internet Computing, 8(3), May 2004.

[10] G. Neworks. Groove, 2005. http://www.groove.net/.
[11] I. Podnar and I. Lovrek. Supporting Mobility with Persistent

Notifications in Publish/Subscribe Systems. In Proceedings
of the Third International Workshop on Distributed Event-
Based Systems (DEBS ’04), pages 80–85, May 2004.

[12] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weath-
erspoon, and J. Kubiatowicz. Maintenance-free Global Data
Storage. IEEE Internet Computing, 5(5), September/October
2001.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-
peer systems. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), Heidelberg, Ger-
many, 2001.

[14] D. A. Smith, A. C. Kay, A. Raab, and D. P. Reed. Croquet -
A Collaboration System Architecture. In First Conference on
Creating, Connecting and Collaborating through Computing,
2003.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for
Internet Applications. In Proceedings of ACM SIGCOMM,
2001.


