Efficient processing of rare queries in Gnutella using a
hybrid infrastructure *

Mark Kornfilt' and Manfred Hauswirth

! LimeWire LLC
2 DERI Galway

Abstract. Gnutella is still one of the most popular P2P systems wittioni$ of
users. The advantages of Gnutella are its low maintenarerbead, its excellent
robustness, and its query processing flexibility. Receptavements, such as the
introduction of ultrapeers and augmented node degree#isagrily reduced its
excessive network bandwidth usage which was one of Gnistellajor draw-
backs. Despite these improvements, Gnutella is still icieffit for rare queries
in terms of low success rates and massive message propagatidhead. In this
paper we augment the unstructured Gnutella network witluatsired overlay
network of ultrapeers based on the Kademlia DHT to addrespribblem of rare
queries in Gnutella. We present the query, maintenanceutirapeer election
algorithms which use both overlays at their optimal efficierdescribe the pro-
tocols and architecture of our hybrid system, and presaningolementation on
the basis of the LimeWire Gnutella client and the Azureusdfalin implemen-
tation. To demonstrate the advantages and efficiency of yhnichapproach we
provide experimental results from large-scale experisiith hybrid ultrapeers
running on PlanetLab which were connected to the live LinteWdnutella and
Azureus Kademlia networks, with approximately 4 millioriieWire) and 800
thousand (Azureus) connected users during the experiments

1 Introduction

Recent P2P research has focused to a large extent on stistgstems, most promi-
nently DHTs which offer a very high search performance amddandwidth overheads
at the cost of having to use sophisticated protocols to déhlakurn and still limited
expressiveness of supported search predicates. In coninasructured overlays, most
prominently Gnutella, are very robust and offer flexible sont for query processing,
but pay these advantages with excessively high bandwidthwuoption and low suc-
cess rates and massive message propagation overheaefqueaies. To address these
problems of Gnutella, we propose a hybrid overlay networlctvbombines the advan-
tages of both worlds.

Before we take a closer look at our proposal, it is importanteview the devel-
opment of the Gnutella network as many improvements have iné®duced over the
years and several assumptions which were correct for tiginatiGnutella overlay of
2001 no longer hold, despite still being used as the basisost mork on Gnutella.

* The work presented in this paper was supported (in part) yNttional Competence Cen-
ter in Research on Mobile Information and Communicationt&ys (NCCR-MICS), a cen-
ter supported by the Swiss National Science Foundationrugdeit number 5005-67322
and (in part) by the Lion project supported by Science Fatiad Ireland under Grant No.
SFI/02/CE1/1131.

Most importantly, the topology and performance of the Ghaiteetwork have evolved.
In respect to topology a super-peer architecture of hidgngar ultrapeers and lower-
layer leaf nodes was introduced. The most popular clients€lVire, Bearshare), which
account for more than 90% of the network, use this architeand enforce a constant
number of open connections between the clients and betweerdttapeers and the leaf
layer. This results in a flatter node degree distributionhsat the node degrees can no
longer be assumed to follow a power-law distribution. Amdhiailly, this architecture
makes the Gnutella network even more resilient to failure.

Furthermore, the user base has grown considerably: Simegiginal conception,
the Gnutella network has evolved to more than 4 million stamgous users. But thanks
to the introduction of the two-tier topology, dynamic quieg, and query routing pro-
tocol (QRP) improvements, the Gnutella network has scaladdtch this substantial
growth of its user base. Ultrapeers also suppress unnegesamtenance network traf-
fic as leaves no longer participate in the continuous pinggpoteractions to discover
peers, thus the required bandwidth overhead for maintenaas significantly reduced.

The augmented node degree and dynamic querying have nm&dtdie desirable
characteristics of Gnutella’s message flooding. The ndtwoawls described in [1]
show that the number of peers reached per hop is stable cethfzathe original stud-
ies [2—4] which were performed when the network was conalalgrsmaller, and that
the prediction done by the dynamic querying mechanism igaecurate up to a certain
threshold.

Despite all these improvements which have reduced the resegonsumption con-
siderably, some drawbacks of Gnutella remain, such as nerlggund on query latency
and the inefficient processing of rare queries. While thenley bound is an unsolvable
theoretical problem, rare queries can be made more effibieprractical means. For
this purpose we propose to augment Gnutella with a struttoverlay network of ul-
trapeers based on the Kademlia DHT [5].

In the following we first give a concise description of the remt protocols and
optimizations used in the Gnutella network and give a datigilroblem description to
enable the reader to assess the advantages of our hybra@bappm contrast to most of
the related work we base our approach on the latest Gnuteltion, thus taking into
account the considerable improvements Gnutella has gineadergone. Still, as we
will show in this paper, our approach can improve considgraiv several of Gnutella’s
disadvantages. As the motivation and practical basis ofititk presented in this paper,
we then provide a discussion how rare queries and dimirggieiturn can be character-
ized and identified in the current Gnutella infrastructund Back up our findings with
experimental data from the live Gnutella network. Then wespnt the query, mainte-
nance, and network election algorithms that provide the¢ éffisiency depending on
whether a query is popular or rare. Our approach constantlyitors the popularity
of queries, detects rare queries and uses the Kademlia DH® §swer rare queries,
while popular queries are answered using the normal Gauitglastructure. We will
show that this hybrid system not only provides reliable seagsults, but also consider-
ably decreases the bandwidth overhead in the Gnutellarsygtated by the message
flood induced by highly propagated searches. We will distlusspecific problems of
detecting and managing rare data in Gnutella’s distribetadronment and show how
our mechanisms can be integrated into the existing Gnutgtastructure. Finally, the
efficiency of our approach is demonstrated by large-scgberxents with hybrid ul-
trapeers running on PlanetLab which were connected towbéimeWire Gnutella and
Azureus Kademlia networks, with approximately 4 millioririeWire) and 800 thou-
sand (Azureus) connected users during the experimentsederiments were done

with a production-quality implementation which will be inded in the LimeWire P2P
software.

2 Current Gnutella technology

Gnutella was one of the first completely decentralized PX®egys and it has been
evolving constantly since its original conception. Thdiaj primitive version of the
protocol has been extended and augmented to address s&ver@omings such as
excessive bandwidth consumption and query delays. Theoweprents include a super-
peer topology (ultrapeers), query routing, and dynamiayjog. In the following we
briefly present these additions to give an up-to-date pectidirthe currently deployed
Gnutella infrastructure.

A significant improvement to the original model is to creat@exarchy within the
network, partitioning the peers into leave nodes and sppers, called ultrapeers in
Gnutella. The goal is to reduce bandwidth consumption witeompromising Gnutella’s
robustness. Ultrapeers are connected as in the originab@awhile leaves are not part
of this network but are connected to at least one ultrape@&hnghields them from un-
desired traffic and handles the query processing for themul&kapeer has multiple
leaves and is connected to multiple other ultrapeers. Limegmplementation cur-
rently uses 3-5 ultrapeer connections for each leaf and@aelpeer services up to 32
leaves and has connections to 30 other ultrapeers. Ultrapeeselected based on long
uptime, higher bandwidth, and reachability (not behindenfall) of a peer. For uptime
it has been shown in [4] that the probability that a host stafme is directly related to
how long it has been connected to the network. Hosts shoaléfibre have a reason-
ably high uptime to become ultrapeer candidates. When a ode joins the network,
it receives a list of potential ultrapeers to try to connectEach node also keeps a list
of ultrapeers it has encountered through pong replies déBlbses a connection to one
of its ultrapeers, it will try to connect to another node iistlist.

To fully exploit this topology, ultrapeers require some wihedge of the data their
leaves expose to the rest of the network. To this end, leaspeeiodically send a set of
hashes of their data to the ultrapeer. This set of hasheBes eajuery routing protocol
table (QRP table). When an ultrapeer receives a data query, ikshisoQRP tables and
forwards the query only to those leaves which have a potentiech.

In the original Gnutella specification, query responsesweuted back to the orig-
inator along the path of the query. This uses significant hédtth and increases the
probability that messages are lost. To address this prgldearch results can now be
returned directly to the query originator. This so-caleti-of-band messaging requires
that a host can accept unsolicited UDP packets, which islwalya the case. A vendor-
specific flag has thus been added in the query message to itfierrasponding peers
if the query originator can receive out of band responsesldaf cannot receive out of
band messages then its ultrapeer can act as a proxy.

To further reduce bandwidth consumption also the conceglyedmic querying
was introduced. The underlying idea is that a leaf first sengiobe query to a subset
of its ultrapeers to estimate the popularity of the query based on the number of
returned hits, it either sends a regular query to some oflitapeers or uses a more
aggressive search strategy Withi'L > 2 to a larger number of ultrapeers (similar to
expanding ring search). This strategy makes a lot of senBkeisharing applications
as users are typically not interested in a complete restinbareasonable number of
hits they can use for downloads.

The popularity of a query is calculated as the ratio of reddrhits vs. the number of

contacted peers. The number of contacted peers can be mtib)eEiT:TO”’] (d— 1),

whered is the ultrapeer nodes’ out-degree (all ultrapeers arenasgdio have the same
d). Depending on this ratio, three scenarios are possible:

1. Ifthe ratio is low, the query is considered rare and seairagith a high TTL.

2. If the ratio is medium, the query is sent to a bigger numbeitcapeers with a low
TTL.

3. Ifthe ratio is high, the search stops.

For even finer-grained control of query flooding LimeWiresiagme_to_ wait_per_hop
variable which determines the aggressiveness of the searetms of the time to wait
before sending the next query (flow control), i.e., it serdsduery withTTL=3 and
then waitgime_to_wait_per_hop before sending the next query with a higher TTL. The
new TTL is calculated with respect to the ratio but in Lime&\s never greater than 6.
Again, this timeout is fine-tuned depending on the query fafiy.

Because leaves are constantly connected to at least 3adtaprho perform dy-
namic querying and because replies to those queries cambeugeof-band without
coming back through the ultrapeers, a notification mecharias been introduced:
When a leaf has received sufficient results, it sen@ser y St at usResponse mes-
sage to its ultrapeer which then considers the query as etetpand discards it.

3 Rare queries and diminishing return

Message flooding as used in unstructured networks worksfaradiscovering popular
data because a query can be propagated to a large numberesf wit a relatively
low TTL, i.e., low number of hops [3, 6], and popular data itehave a high replication
factor in the network [7]. However, for rare items, messageding in unstructured
networks performs poorly as it consumes a large amount afusiith due to the large
number of messages flooded into the network, queries haggdatency as it increases
which each hop until a hitis found, and it is unreliable assis@rch has a low probability
of reaching a host which has the required data.

In contrast, DHTs offer a very good search performancecslfyi O(logn), for
any data item in the system independent of its popularitytmrdiwidth consumption
is low. However, DHTs require sophisticated protocols taldgth network dynamics
(churn) and still only support queries of limited expre#giMoreover, DHTs are com-
monly not optimized for mass-market file sharing applicagiovhere most requests are
for a small number of very popular files and where network nlisrextremely high.
Therefore, the rational of the approach presented in thpgipa to use Gnutella as the
basic communication infrastructure to connect peers arfde popular searches, and
to use a DHT to publish and query for rare items.

3.1 Defining rare data items

The basic design question for such a hybrid system is, hoswdata items are defined.
Previous studies [8,9, 7, 6] have evaluated the data digimilo in Gnutella but have
mostly used simulations or produced artificial queries t@snee query replies and
result sets. Moreover, these studies have focused on rletharacteristics such as
overall query and file distribution across connected pdarsontrast to these studies
we need user-centric statistics in order to gain knowledgedividual peer behaviors.
To this end, we had to perform a number of experiments to cotlee required
statistics. We deployed 50 ultrapeer nodes on PlanetLgtafidlinked them into the
live LimeWire network. These nodes ran a modified LimeWirerdl and recorded
queries and corresponding results in the Gnutella netwdiee precisely, we used
ultrapeer probes with a custom implementation of the Linre\Wbre and performed
passive measurements, i.e., measurements that did nderetavith the network by

actively generating messages. In the experiments we redarbre than 100’000 in-
coming queries which produced over 4.5 million results.€ehsets where produced
by the probes on 19/01/2006, 21/01/2006 and 29/01/2006td#y queries for 1 day
in the first experiment and for 2 days in the other two expenitsieTo normalize the
statistics, the following changes were applied to the detist s

1. Queries that did not complete because the leaves discmthitom the ultrapeer
before the end of the search, were discarded, as this dogsavide relevant in-
formation.

2. Leaves have 3-5 open ultrapeer connections. Even thiwgprobes have been
deployed in dispersed locations around the world, someskawnnected to more
than one probe at a time. This led to duplicate entries in Hta det. These were
identified and removed.

3. When leaves receive enough results (150 in LimeWirey, tlodify their ultrapeers
to stop querying the network buer y St at usResponse as described above.
We have therefore replaced the value of the result set oé thesries with the fol-
lowing formula: f(v) = 122=2, wherey is the result set size currently recorded
by the probe and is the out-degree of leaves. This formula calculates theagee
number of results returned by each of the leaf’s ultrapeesshe leaf has received
150 results in total, it means it has receiuéd — results from its other ultrapeers,
which we finally divide by the out-degree minus the probe td e average num-
ber of results routed per ultrapeer.

3.2 Experimental results

Query latency and result set size. Our first goal was to gather information on the query
popularity of individual queries to assess the possibidftimprovements to the current
network. Figure 1 shows the cumulative distribution fuot{CDF) of query times
recorded in the experiments.

A query stops only if it was successful and has generatedgimoesults, or in
the case of a failure, when the maximum search time has elapse 200 seconds
in LimeWire. The first observation from this data set is thgcdntinuity in the query
times which is due to the dynamic querying mechanism as iptadie TTL of the
search message depending on the query popularity. Seaamhéisst sent to a small
set of peers, and the search horizon is then increased pedgely if necessary. This
creates the waves of results in the figure. The second oltgeryvevhich is the most
relevant for our purpose, is that 80 percent of the queriessaccessful before 120
seconds while approximately 18 percent of searches aekilhd never get enough
results.

Additionally, as shown in Table 1, successful queries gafhehave a good mean
response time of 15.958 seconds for the first response andmnmesult set size 94.04.
The corresponding figures for queries which returned insefit result set sizes are
138.149 seconds and 13.09 hits (these number does not énglueties that did not
return any result).

These data indicate that the Gnutella network is very efftérefinding the majority
of data, providing quite large result sets in a small amodititee, but that almost 20%
of the queries could benefit from an improved resource lonatiechanism such as the
one we propose in this paper.

_—
s

000

INNININE: .

[D= i Ay

O o A e e

QéPk ﬁa& s’av? &

S N
PRI P I & &
R A & & F

Query Time((ms)

Fig. 1. CDF of query times

Table 1.Result set size and first result latency with respect to tleeygoutcome

Query outcomfMean result set sizmean first response latency (§doyal (%
successful 94.04 15.958 81.76
failure 13.09 138.149 18.24

4 Hybrid Gnutella Topology

In order to optimally exploit both network types, it is impant to use them in situations
where they perform best: Gnutella is efficient with respedtigh network churn, pop-
ular files, and range queries, whereas DHT resource localgmrithms are extremely
efficient in finding exact matches for data keys in the netwbuk generally incur high
efforts to deal with churn. It was therefore clear that we taéxclude a consider-
able subset of the unstructured network, and use the DHT withythose peers that
could provide a higher degree of stability. As this coinsiaéth the requirements for
ultrapeers, we decided to only use ultrapeers in the DHT.

In the resulting topology, leaves have no access to the DRd oaly a subset of
stable ultrapeers are connected to the structured netivbelgoal is to connect only the
innermost layers of Gnutella’s onion-like overlay, as disd in [1]. This is achieved
by ensuring that only ultrapeers with a sufficiently highioqg connect to the hybrid
network. Stable ultrapeers ensure that the maintenarftie inethe DHT is minimized.

As only a subset of the ultrapeer population is stable endogdarticipate in the
DHT we need to gather and disseminate stability charatit=ito enable the system
to find good candidates. In addition to all the required cttaristics detailed in Sec-
tion 2 to become an ultrapeer in the Gnutella network, we defmadditional variable,
DHT _CAPABLE, maintained by each peer, which takes into account the miusession
and average session uptimes. Following the study in [1],npgse an initial minimum
session uptime of 24 hours in order to ensure that the ukrdpgart of the stable core
of the unstructured network.

The rest of the Gnutella network does not participate in thidg @nd is only allowed
to interact with it to query and publish (rare) data. Therefthe addresses of the DHT
nodes need to be announced in the Gnutella network, whichchievee by extending
the existing ping-pong scheme, such that the pong messagescan additional ven-
dor message part containing the sender’s participatidnssta the DHT. This method
does not add any additional overhead to the network, as wwegltsa small piece of
information to standard ping-pong interactions which @ses not break compatibility
as we follow the recommended procedure for extensions tdeBau

Consequently, regular ultrapeers hold an additional ngutble of hosts connected
to the DHT to which they can route DHT-related messages. Wednce two new ven-
dor messages into the Gnutella proto@iT_QUERYREQUEST andDHT_STOREREQUEST,
which are used by leaves and non-DHT ultrapeers to interiittiae structured overlay.

When a peer wishes to query the DHT, it sends a Gnuller yRequest message
encapsulated intoBHT_QUERYREQUEST message to a DHT peer it knows. If the peer
sending the query is a leaf node shielded by ultrapeersnissthe message to one of
its ultrapeers which forwards it to a DHT node. Subsequeatattions, such as return-
ing results or downloading data, are done through the stdr@autella protocol. The
DHT_STOREREQUEST is used to insert rare data into the DHT and is handled in the
same way as thBHT_QUERYREQUEST message.

5 Hybrid Resource Location

Our hybrid system strives to provide better resource loaaby combining the advan-
tages of unstructured and structured networks. Howevisrctin only be achieved by
relying on techniques that optimize the use of both netwdd{ending on query pop-
ularity. In the following we propose algorithms that can lppléed in a hybrid system
based on the Gnutella network. We do not provide exact tupargmeter values for
the variables introduced in these algorithms, due to thetfet the optimum behav-
ior of the overall system has to be determined through a {acgée deployment and
continuous empirical studies which are on the way at the nrmbme

5.1 Dynamic Querying

The dynamic querier in LimeWire tries to efficiently locatsources in the unstruc-
tured network. It trims the message flooding to match quepufarity and controls the
aggressiveness of a search. It is hence straightforwardegriate the DHT search into
the dynamic querier. Listing 1.1 shows the hybrid searchritlyn we use at ultrapeers
participating in the DHT:

for queries in dynamicquerier{

while (t < QUERY.TIMEOUT){ // the dynamic querying timeout

if (IforwardedTolLeaves)
forwardQueryToLeaves();// first send query to our direct leaves
forwardedTolLeaves =true;

}

else if(!sentProbeQuery{
sendProbe ();// then send probe query to estimate data availability
sentProbeQuery =true;

}

else if((!queriedDHT) AND
((t > FIRST_T.DHTLIM AND resultSet == 0) OR

)
(t >= TDHTLIM AND resultSet< RESULTSET.DHTLIM)) {
sendDHTQuery() ;
queriedDHT =true;

}
}
else{

}

sendDynamicQuery () ;// An adaptative—TTL query is sent in Gnutella

Listing 1.1. Hybrid dynamic querying algorithm

The dynamic querier starts by sending the query to all thrapgter’s direct leaves.
Next, it dispatches the probe query, which enables it toredé the data availability for
this query. If a certain time expires, which was allocatedstandard Gnutella queries
to return meaningful results, i.e., the query is supposduktoare, it queries the DHT
for results. The criteria when to query the DHT are derivedrfrour empirical studies
presented in Section 3.2 and are as follows:

e Our empirical studies show that more than 99 percent of tloeessful queries
get their first result before 100 seconds. We therefore é@dctd start querying
the DHT if no results have arrived before that time. To thal,eme introduce a
FI RST_T_DHTLI Mconstant.

e Only searches that did not return enough result withibHTLI Mtime are taken
into consideration. This timeout is set to 120 seconds. Timéghmum result set size

CONDORWN

is determined byRESULTSET _DHTLI M which we set to 23, as it is the average
size for unsuccessful queries in our experiments.

For this algorithm to work we require the leaves to implenteeistandar@uer y St at usResponse

synchronization mechanism to notify their ultrapeer ifythheceived enough results
through out-of-band replies.

5.2 Managing rare data in the DHT

Publishing rare data in the DHT is a non-trivial problem, rdividually at each peer
there is no a-priori knowledge on the availability of a pautar file in the network. As
the hybrid system only uses the DHT for rare files, it is alsbarooption to system-
atically allow every host to publish information about itstiee data library. Thus we
propose the following techniques for publishing data tolr:

Client-based publishing. The first mechanism for client-based publishing we sug-
gest is to associate a counter with each data item shared legra Fhis counter is
persistent over sessions and counts the requests receivadiata item over a period
of time to assess its popularity. When the client detectstiieademand for a particular
item is low, it sends ®HT_STOREREQUEST to store it in the DHT layer.

The second mechanism for client-based publishing is a tepp{srocess that relies
on file downloads. When a peer downloads a rare file, i.e., avidw number of loca-
tion, it adds itself to the DHT as an additional location gsDHT_STOREREQUEST.

If the location the file was downloaded from did not exist ie DHT yet, the peer also
inserts the original location into the DHT. Additionallyy tomply with Kademlia’s
specification, we require every peer to republish its dagayelwvour so that the DHT can
expire values for disconnected hosts after this timeouei\thhost starts a new session
with a different IP and port, it republishes all its data, fstltat the new values erase the
previous ones.

Network-based publishing. Ultrapeers have two opportunities to detect and publish
rare data items in case the search is proxied. The first istaftelynamic querier stops
because it did not get enough results before the timeout cause it contacted too
many hosts. In this case the dynamic querier iterates thrtheglist of the replies that
have arrived and publishes rare files as shown in Listing 1.2.

if ((t> QUERY.TIMEOUT) AND (resultSet< RESULTSET.DHTLIM)){
foreach response in query.responges
if (isSpam(response))xontinue; // don’t publish spam responses
else {
if (response.numberOfLocations NUMLOCS.DHTLIMIT) // low file availability
publishDHTFile(response);
}

Listing 1.2. Post-query publishing algorithm

The only additional variable introduced in Listing 1.2, lvitespect to the hybrid
resource location algorithm, SUM_OCS_DHTLI M T. It ensures that replication of
the data to be inserted is really low and is an additionalgmtain against spam, as
malicious nodes that systematically answer queries aksoddarge number of available
locations. We use an initial value of 2 for that variable @zhen heuristics).

The second opportunity to publish rare files it to detectiasponses. When a query
is unpopular, it incurs a large number of hops before reacaihost that has the data.
Consequently, some responses may arrive after the dynareieq stops, and must be
intercepted and published in the DHT using the same comditi@ above.

Finally, as a prerequisite for both techniques, the ulteag®s to verify that the
file it wants to publish is not already in the DHT. As the resmulocation algorithm
presented in Listing 1.1 queries the DHT for rare items, $tiaightforward to know if

the element that is going to be published is already storéddrstructured overlay or
not. For each search, the ultrapeer therefore keeps trable oésponses received from
the DHT and compares those with the file it wishes to publishreedoing so.

5.3 Removing popular data from the DHT

The popularity of a file in the DHT can be measured by the nurabgmes it has been
downloaded. With client-based publishing, peers searetDiiT for a file, download
it, and add themselves to the list of locations availablgHat file. Therefore, it is easy
to detect and remove entries in the DHT which have becomelpogtithe number
of locations for a DHT entry goes beyond a threshéld¥YLOCS_LI M T), this means
that the file has in fact become popular and thus is no longbetoonsidered a rare
data item and can simply be removed from the DHT. In our hybrigdlementation,
this is accomplished by storing an empty value for a given key, the corresponding
(key, originator Node) entry in the DHT is deleted.

6 Experimental evaluation

To fully evaluate our system, a large-scale deployment ohgbrid client would have
been required. As this was not feasible, the goal of our etiin has been to simulate
queries for rare data items available in the Gnutella nétanod in the DHT and analyze
both networks’ characteristics and behaviors. Our evalonatas therefore focused on
the efficiency of our hybrid algorithms in detecting and psitihg rare items in the
structured overlay.

In the experiments we deployed 50 hybrid ultrapeers on Rlabg10]. Each ultra-
peer ran on a dedicated PlanetLab node. Then the ultrapeeescannected to the live
LimeWire Gnutella network (approximately 4 million usersriohg the experiments)
and the Azureus Kademlia network (approximately 800 thodsesers during the ex-
periments). Then we used the network-based publishingitigopresented in Section
5.2 to publish rare data items returned in the responses efagucoming from the
LimeWire leaves connected to our hybrid ultrapeers. Aftevahours—to receive suf-
ficient amounts of rare data items—we issued queries foffitlaseby iterating through
rare files published in the DHT, simultaneously querying@mitella network and the
DHT, and recording the latency of the search for both netaork

In the setup of the experiments we also considered the follpigsues:

Data availability: As the DHT only indexes rare data but does not store the cor-
responding physical files, a search may succeed but thegtpeers may be offline.
In Gnutella in contrast, only nodes that have the queriedréifgond to a query. To
make a fair comparison between both networks, thus we hadstare that the nodes
holding rare files indexed in the DHT were still online duritige test. To that end,
we systematically sent a ping message to every host befantingtthe tests to verify
their availability. As firewalled hosts are shielded frorstkind of traffic, we could not
include them into our evaluation.

Node availability: In LimeWire's implementation, a node does not answer gserie
in the case that it cannot upload the data, for example, wiemdde already has too
many open connections or when the node only has parts of ta&elm. Thus ping mes-
sages were not sufficient to verify that the node could redpoa query. To get around
this problem we additionally used LimeWire’s proprietaiiyADPI NGandHEADPONG
messages, where the latter contains information aboutikahility of the file and the
node.

Query trimming: Our first evaluation showed a linear increase in the DHT's re-
sponse time. That was due to the fact that each hybrid uktrapas starting thousands

of queries simultaneously on the DHT, and that each querfppas multiple lookups
in parallel. In order to correct this, we enforced a 5 secdmdak between the queries,
in order not to overload the system.

Unbiased routing tables:After the collection phase of rare data items, we reinitial-
ized the Gnutella and Kademlia routing tables of each hybtidpeer before starting
the query experiments. This ensured that the routing taides not biased towards con-
tacts that had already been seen while intercepting quamgpublishing data items.

The results presented below have been recorded on 08/@2/2902/2006, 11/02/2006,
12/02/2006, 14/02/2006 and 15/02/2006.

For the Gnutella overlay the query success rate was 27% wiithaan query latency
of 75989ms, while the DHT had 99% success rate with a meandatef 3878ms.

Although we only queried for rare data which was availablé@network (data and
node availability was ensured as described above, Gnuilil only find 27 percent
of these data items, whereas the DHT had a success rate of@&hperhe missing 1
percentis due to individual node failures in republishiatedn the DHT. Moreover, the
search latency for the DHT is approximately 20 times lowantBnutella’s. As shown
in Figure 2, more than 50 percent of the answers from the DHiiecim less than a
second, even though 800’000 nodes participated in the DHifglour tests (the figure
shows only the first 5 seconds of the full plot which was the tnmteresting interval
for us; thus the CDF does not reach 100%).

These results prove that our algorithms were successfdeintifying and publish-
ing rare data items, and show the potential gain in succésama latency. As expected,
they demonstrate Gnutella’s unreliability and inefficigintfinding rare items.

In order to evaluate the influence of the parameRESULTSET_DHTLI M(result
set threshold for unsuccessful queries) &l OCS_DHTLI M T (replication thresh-
old) discussed in Section 5, we split the hybrid ultrapestisfour groups with different
combinations of these parameter values: Group 1 — (10, dyis?2 — (20, 1), Group 3
—(30, 1), and Group 4 — (30, 3).

Figure 3 shows the search success rates for Gnutella foriffeestit groups. The
figures indicate that relaxing the parameters that seleetfiles directly affects the
efficiency of the hybrid platform. This test also demongsahe importance of fine-
tuning the hybrid algorithm’s parameters in order to stap@nutella network’s query
message flooding at the optimal time.

DI
B

M R O A SR Ot g

Search Latency (ms)

Fig. 2. DHT search latency

40%
35%
30%
25%
20%

18%

10%

5%

0%

Groupt Group2

Group3 Groupd

Fig. 3. Success rates for different parameters

10

The bandwidth overhead in the hybrid approach mainly cémsithe bandwidth
required to insert data items into the DHT, i.e., the lookagts to find the node to store
the value plus thput message’s size. The lookup cost is a function of the netwasike
and the degree of parallelism of the system, which is reptedeby then: parameter
in Kademlia. If for each hopy nodes are contacted (= 4 in Azureus) and we need
approximately 20 hops to reach the target in a network of @@@tonnected Kademlia
nodes, a rough estimate of the number of required lookupagesss 80 messages of
size 297 bytes (41 bytes header + 256 bytes data), i.e., 28/&68 overall in the DHT
per insert operation. Querying produces a similar message |

By analyzing the statistics from our plain Gnutella ultrarse we see that the av-
erage number of nodes queried for searches that last lasd @taseconds is 73’710,
while the average number of nodes queried for searchestahbre than 100 seconds
is 697°050, i.e., use 10 times more bandwidth. Consequéhtlye longer queries are
performed through the DHT, we should be able to reduce thesagesflooding in the
network by approximately an order of magnitude. Therefeven after adding main-
tenance, publishing and querying, the DHT can potentiadlyobgreat benefit to the
Gnutella network.

Finally, load balancing in the hybrid system is automaljcdbne by removing
overly popular queries from the DHT. With the algorithmsgmeted in Section 5.2, only
items belonging to the tail of the file distribution in the Gella network are inserted
in the DHT. Consequently, these items should never genataitgh demand at a single
node.

7 Related Work

Our approach extends the case for a hybrid search infraisteumade in [7]. This paper
provides an initial proof-of-concept proposal for a hybsidtem, but does not define
the topology of the hybrid Gnutella network and the requirgdractions to an extent
necessary to assess the practical applicability of theqwapFurthermore, it does not
take into account the recent Gnutella improvements whiclugeeto greatly improve
on some of the described problems. Our contributions betfeadiork described in [7]
are:

Our proposal tightly integrates hybrid querying and datalighing algorithms into
the most recent Gnutella specification and provides a reddwlarge-scale, experi-
mental evaluation of the algorithms in a live Gnutella netwim back up our claims.
By exploiting the hybrid dynamic querying mechanism, ratien using a fall-back
approach as proposed in [7], we not only improve the searlay deit also effectively
reduce the bandwidth of Gnutella’s message flooding tecienty an order of magni-
tude. Furthermore, the “selective publishing” techniqueppsed in [7] cannot be used
by itself due to the redundancy and transience of Gnutall&’apeer-to-leaf connec-
tions. In contrast, we propose a client-side data publghlgorithm that monitors the
data and behavior of peers in order to discover rare datasitem

We extend the Gnutella protocol and the ultrapeer elecéohrtiques to be able to
selectively build the DHT, and provide the nodes in the wtitred network with the
means to discover and bootstrap to the structured network.

We provide a detailed description of the subsequent intieraxbetween the struc-
tured and the unstructured overlay in order to achieve destatd scalable system.
Additionally, we address the possibility of a surge in the@larity of a data item and
propose techniques to deal with that situation.

We address the problem of spam in the Gnutella network whaatseriously impact
on the detection of rare queries and deal with the consegsdnc a hybrid querying
technique.

11

The work of [7] is extended in [11]. In contrast to the work ggated in this paper,
[11] does not propose a concrete hybrid network topologyt deés not discuss the
strategies how and when nodes connect to the DHT, whereasopese a scalable
architecture and extensions to the existing Gnutella ndtwderactions in order to
facilitate DHT node discovery.

[11] also proposes that the rare files of Gnutella leafs ahg identified and pub-
lished by their ultrapeers. This is not feasible for thedwling reasons:

Leafs are connected to 1-5 ultrapeers at the same time wtaensrthat rare files
are published multiple times as the paper does not addrisssettundancy. Addition-
ally, ultrapeer-leaf connections can be very transientisithe leaf can drop connections
and select better ones as well as ultrapeers can drop cameeict their leafs. Both will
result in considerable redundant publishing which is natrassed. Ultrapeers have
very limited knowledge of a leaf’s files as only a bloom filterised in [11]. This does
not provide the required information. If the proposed Solutis used in the experimen-
tal deployment of [11] is to use tHarowse Host Gnutella protocol message to list all
the leaf’s files, then this solution is obviously not scagaliDnly leafs can effectively
monitor the hit rate on each of their files, i.e., how often a i searched and how
often it is published. Thus, leafs should also be part ofdeaiification and publication
process of rare data item. Our paper proposes a client-fpagg#idhing mechanism to
address this.

Also [11] does not address the very probable situation ofrgesin a file popular-
ity while we describe and propose a solution to that problEne proposed analytical
model does not take into account dynamic querying, whichaaly limits Gnutella’s
bandwidth consumption considerably. And in contrast towark, [11] does not ad-
dress the additional problem of spam and how it particulaffigcts rare queries.

The implementation presented in [11] is based on PIERSeattbh offers keyword-
based searching through inverted lists on files and dig&ibjoins in the DHT. Al-
though the paper acknowledges the problem of hotspots indDKToes not explain
how the inverted index will work with popular keywords. As wiee approach in [11]
selects only rare files for publishing. However, file namesdee files can and often will
contain very popular keywords. Therefore, a system basé@ynord search seems to
be of limited feasibility in real-world scenarios.

Our paper fully integrates the use of the structured netwddd¢he current Gnutella
standard by taking advantage of the dynamic querying tecieniextending the existing
Ping/Pong scheme to ensure that nodes are able to bootstitagp DHT at any given
time.

Other related work includes the approach by Castro et a].\jtich proposes a
hybrid system in which the network maintenance is handled Byructured network
and the search and data replication is done in an unstrache®vork. This study is
based on the obsolete original Gnutella network and thezéfonot applicable to the
current Gnutella system anymore.

Several other approaches [13, 14, 3, 15] have tried to asldihesscalability prob-
lems of the original Gnutella protocol by modifying the netl topology, the query
algorithms or the data replication strategies in the nétwbinese approaches have pro-
posed techniques that exploit node heterogeneity anddintesome flow control for
queries, techniques which are now already included in thmeentiGnutella standard
which we base our approach on.

8 Conclusions
In this paper we have presented an extension of GnutellaavibtiT to address the
problem of queries for rare files, which are approximatelo26f the total queries in

12

Gnutella but account for significant network traffic. We mneted experimental results
from a large-scale experimental study that show that Glauteindles such queries
very inefficiently und unsuccessfully and that such quer@sse excessive bandwidth
consumption. Our hybrid approach uses Gnutella for pogildsr which it can handle
efficiently and a Kademlia DHT of ultrapeers for rare files. p¥esented the algorithms
to set up the hybrid infrastructure, to detect and managadata items, and to query for
such data, and demonstrated the efficiency and validity oApproach by a large-scale
experimental deployment in the live Gnutella (4 million i9eand Azureus Kademlia
(800 thousand users) networks. Our results show that Gawcteh benefit considerably
from our hybrid approach as it increases success rates ffém@ 99% and decreases
bandwidth consumption by an order of magnitude. The expanmwere done with
a production-quality implementation which will be includeto the LimeWire P2P
software.

References

1. Stutzbach, D., Rejaie, R.: Characterizing Unstruct@edrlay Topologies in Modern P2P
File-Sharing Systems. In: Internet Measurement Conferef2005)

2. Jovanovic, M., Annexstein, F., Berman, K.: Modeling peepeer network topologies
through small-world models and power laws. TELFOR (2001)

3. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search eptication in unstructured peer-
to-peer networks. In: International Conference on Supapding. (2002)

4. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A Measureméumtlysof Peer-to-Peer File Sharing
Systems. In: Proceedings of Multimedia Computing and Nekting. (2002)

5. Maymounkov, P., Mazieres, D.: Kademlia: A Peer-to-Pefarmation System Based on the
XOR Metric. In: First International Workshop on Peer-tceP8ystems (IPTPS’01), London,
UK (2002)

6. Stutzbach, D., Rejaie, R., Zhao, S.: CharacterizingsHiléhe Modern Gnutella Network: A
Measurement study. In: SPIE/ACM Multimedia Computing aretwbrking, San Jose, CA
(2006)

7. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: eTBase for a Hybrid P2P Search
Infrastructure. In: 3rd International Workshop on PeeRt®r Systems (IPTPS’03). (2004)

8. Chu, J., Labonte, K., Levine, B.N.: Availability and lditg measurements of peer-to-peer
file systems. In: ITCom: Scalability and Traffic Control inNetworks. (2002)

9. Klemm, A,, Lindemann, C., Vernon, M., Waldhorst, O.: Giwerizing the query behavior in
peer-to-peer file sharing work-loads. In: Internet Measumet Conference, Taormina, Italy
(2004)

10. Chun, B., Culler, D., Roscoe, T., Bavier, A., PetersanVawrzoniak, M., Bowman, M.:
PlanetLab: An Overlay Testbed for Broad-Coverage Servid€M SIGCOMM Computer
Communication Revie\83(3) (2003)

11. Loo, B.T., Hellerstein, J.M., Huebsch, R., ShenkeiSfica, |.: Enhancing P2P File-Sharing
with an Internet-Scale Query Processor. In: 30th Inteonati Conference on Very Large
Databases (VLDB). (2004)

12. Castro, M., Costa, M., Rowstron, A.: Peer-to-peer ayexlstructured, unstructured, or both.
Technical report, Microsoft Research, Cambridge, UK (3004

13. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, Neni&r, S.: Making Gnutella-like
P2P Systems Scalable. In: ACM SIGCOMM. (2003)

14. Krishnamurthy, B., Wang, J., Xie, Y.: Early Measurensenfta Cluster-based Architecture
for P2P Systems. In: ACM SIGCOMM. (2001)

15. Osokine, S.: The Flow Control Algorithm for the Distribd 'Broadcast-Route’ Networks
with Reliable Transport Links (2001) http://www.groutest/gnutella/flowcntl.htm.

13

