
Efficient processing of rare queries in Gnutella using a
hybrid infrastructure ?

Mark Kornfilt1 and Manfred Hauswirth21 LimeWire LLC2 DERI Galway

Abstract. Gnutella is still one of the most popular P2P systems with millions of
users. The advantages of Gnutella are its low maintenance overhead, its excellent
robustness, and its query processing flexibility. Recent improvements, such as the
introduction of ultrapeers and augmented node degrees significantly reduced its
excessive network bandwidth usage which was one of Gnutella’s major draw-
backs. Despite these improvements, Gnutella is still inefficient for rare queries
in terms of low success rates and massive message propagation overhead. In this
paper we augment the unstructured Gnutella network with a structured overlay
network of ultrapeers based on the Kademlia DHT to address the problem of rare
queries in Gnutella. We present the query, maintenance, andultrapeer election
algorithms which use both overlays at their optimal efficiency, describe the pro-
tocols and architecture of our hybrid system, and present our implementation on
the basis of the LimeWire Gnutella client and the Azureus Kademlia implemen-
tation. To demonstrate the advantages and efficiency of our hybrid approach we
provide experimental results from large-scale experiments with hybrid ultrapeers
running on PlanetLab which were connected to the live LimeWire Gnutella and
Azureus Kademlia networks, with approximately 4 million (LimeWire) and 800
thousand (Azureus) connected users during the experiments.

1 Introduction
Recent P2P research has focused to a large extent on structured systems, most promi-
nently DHTs which offer a very high search performance and low bandwidth overheads
at the cost of having to use sophisticated protocols to deal with churn and still limited
expressiveness of supported search predicates. In contrast, unstructured overlays, most
prominently Gnutella, are very robust and offer flexible support for query processing,
but pay these advantages with excessively high bandwidth consumption and low suc-
cess rates and massive message propagation overhead for rare queries. To address these
problems of Gnutella, we propose a hybrid overlay network which combines the advan-
tages of both worlds.

Before we take a closer look at our proposal, it is important to review the devel-
opment of the Gnutella network as many improvements have been introduced over the
years and several assumptions which were correct for the original Gnutella overlay of
2001 no longer hold, despite still being used as the basis of most work on Gnutella.? The work presented in this paper was supported (in part) by the National Competence Cen-

ter in Research on Mobile Information and Communication Systems (NCCR-MICS), a cen-
ter supported by the Swiss National Science Foundation under grant number 5005-67322
and (in part) by the Lı́on project supported by Science Foundation Ireland under Grant No.
SFI/02/CE1/I131.

Most importantly, the topology and performance of the Gnutella network have evolved.
In respect to topology a super-peer architecture of higher-layer ultrapeers and lower-
layer leaf nodes was introduced. The most popular clients (LimeWire, Bearshare), which
account for more than 90% of the network, use this architecture and enforce a constant
number of open connections between the clients and between the ultrapeers and the leaf
layer. This results in a flatter node degree distribution so that the node degrees can no
longer be assumed to follow a power-law distribution. Additionally, this architecture
makes the Gnutella network even more resilient to failure.

Furthermore, the user base has grown considerably: Since its original conception,
the Gnutella network has evolved to more than 4 million simultaneous users. But thanks
to the introduction of the two-tier topology, dynamic querying, and query routing pro-
tocol (QRP) improvements, the Gnutella network has scaled to match this substantial
growth of its user base. Ultrapeers also suppress unnecessary maintenance network traf-
fic as leaves no longer participate in the continuous ping-pong interactions to discover
peers, thus the required bandwidth overhead for maintenance was significantly reduced.

The augmented node degree and dynamic querying have maintained the desirable
characteristics of Gnutella’s message flooding. The network crawls described in [1]
show that the number of peers reached per hop is stable compared to the original stud-
ies [2–4] which were performed when the network was considerably smaller, and that
the prediction done by the dynamic querying mechanism is very accurate up to a certain
threshold.

Despite all these improvements which have reduced the resource consumption con-
siderably, some drawbacks of Gnutella remain, such as no upper bound on query latency
and the inefficient processing of rare queries. While the latency bound is an unsolvable
theoretical problem, rare queries can be made more efficientby practical means. For
this purpose we propose to augment Gnutella with a structured overlay network of ul-
trapeers based on the Kademlia DHT [5].

In the following we first give a concise description of the current protocols and
optimizations used in the Gnutella network and give a detailed problem description to
enable the reader to assess the advantages of our hybrid approach. In contrast to most of
the related work we base our approach on the latest Gnutella version, thus taking into
account the considerable improvements Gnutella has already undergone. Still, as we
will show in this paper, our approach can improve considerably on several of Gnutella’s
disadvantages. As the motivation and practical basis of thework presented in this paper,
we then provide a discussion how rare queries and diminishing return can be character-
ized and identified in the current Gnutella infrastructure and back up our findings with
experimental data from the live Gnutella network. Then we present the query, mainte-
nance, and network election algorithms that provide the best efficiency depending on
whether a query is popular or rare. Our approach constantly monitors the popularity
of queries, detects rare queries and uses the Kademlia DHT [5] to answer rare queries,
while popular queries are answered using the normal Gnutella infrastructure. We will
show that this hybrid system not only provides reliable search results, but also consider-
ably decreases the bandwidth overhead in the Gnutella system created by the message
flood induced by highly propagated searches. We will discussthe specific problems of
detecting and managing rare data in Gnutella’s distributedenvironment and show how
our mechanisms can be integrated into the existing Gnutellainfrastructure. Finally, the
efficiency of our approach is demonstrated by large-scale experiments with hybrid ul-
trapeers running on PlanetLab which were connected to the live LimeWire Gnutella and
Azureus Kademlia networks, with approximately 4 million (LimeWire) and 800 thou-
sand (Azureus) connected users during the experiments. Theexperiments were done

2

with a production-quality implementation which will be included in the LimeWire P2P
software.

2 Current Gnutella technology
Gnutella was one of the first completely decentralized P2P systems and it has been
evolving constantly since its original conception. The initial, primitive version of the
protocol has been extended and augmented to address severalshortcomings such as
excessive bandwidth consumption and query delays. The improvements include a super-
peer topology (ultrapeers), query routing, and dynamic querying. In the following we
briefly present these additions to give an up-to-date picture of the currently deployed
Gnutella infrastructure.

A significant improvement to the original model is to create ahierarchy within the
network, partitioning the peers into leave nodes and super-peers, called ultrapeers in
Gnutella. The goal is to reduce bandwidth consumption without compromising Gnutella’s
robustness. Ultrapeers are connected as in the original Gnutella while leaves are not part
of this network but are connected to at least one ultrapeer which shields them from un-
desired traffic and handles the query processing for them. Anultrapeer has multiple
leaves and is connected to multiple other ultrapeers. LimeWire’s implementation cur-
rently uses 3–5 ultrapeer connections for each leaf and eachultrapeer services up to 32
leaves and has connections to 30 other ultrapeers. Ultrapeers are selected based on long
uptime, higher bandwidth, and reachability (not behind a firewall) of a peer. For uptime
it has been shown in [4] that the probability that a host staysonline is directly related to
how long it has been connected to the network. Hosts should therefore have a reason-
ably high uptime to become ultrapeer candidates. When a new node joins the network,
it receives a list of potential ultrapeers to try to connect to. Each node also keeps a list
of ultrapeers it has encountered through pong replies. If a leaf loses a connection to one
of its ultrapeers, it will try to connect to another node in this list.

To fully exploit this topology, ultrapeers require some knowledge of the data their
leaves expose to the rest of the network. To this end, leaf peers periodically send a set of
hashes of their data to the ultrapeer. This set of hashes is called aquery routing protocol
table (QRP table). When an ultrapeer receives a data query, it checks its QRP tables and
forwards the query only to those leaves which have a potential match.

In the original Gnutella specification, query responses were routed back to the orig-
inator along the path of the query. This uses significant bandwidth and increases the
probability that messages are lost. To address this problem, search results can now be
returned directly to the query originator. This so-calledout-of-band messaging requires
that a host can accept unsolicited UDP packets, which is not always the case. A vendor-
specific flag has thus been added in the query message to informthe responding peers
if the query originator can receive out of band responses. Ifa leaf cannot receive out of
band messages then its ultrapeer can act as a proxy.

To further reduce bandwidth consumption also the concept ofdynamic querying
was introduced. The underlying idea is that a leaf first sendsa probe query to a subset
of its ultrapeers to estimate the popularity of the query andbased on the number of
returned hits, it either sends a regular query to some of its ultrapeers or uses a more
aggressive search strategy withTTL � 2 to a larger number of ultrapeers (similar to
expanding ring search). This strategy makes a lot of sense infile-sharing applications
as users are typically not interested in a complete result but in a reasonable number of
hits they can use for downloads.

The popularity of a query is calculated as the ratio of returned hits vs. the number of
contacted peers. The number of contacted peers can be estimated by

PTTL�1i=0 (d� 1)i,
3

whered is the ultrapeer nodes’ out-degree (all ultrapeers are assumed to have the samed). Depending on this ratio, three scenarios are possible:
1. If the ratio is low, the query is considered rare and sent again with a high TTL.
2. If the ratio is medium, the query is sent to a bigger number of ultrapeers with a low

TTL.
3. If the ratio is high, the search stops.

For even finer-grained control of query flooding LimeWire uses atime to wait per hop
variable which determines the aggressiveness of the searchin terms of the time to wait
before sending the next query (flow control), i.e., it sends the query withTTL=3 and
then waitstime to wait per hop before sending the next query with a higher TTL. The
new TTL is calculated with respect to the ratio but in LimeWire is never greater than 6.
Again, this timeout is fine-tuned depending on the query popularity.

Because leaves are constantly connected to at least 3 ultrapeers who perform dy-
namic querying and because replies to those queries can be sent out-of-band without
coming back through the ultrapeers, a notification mechanism has been introduced:
When a leaf has received sufficient results, it sends aQueryStatusResponsemes-
sage to its ultrapeer which then considers the query as completed and discards it.

3 Rare queries and diminishing return
Message flooding as used in unstructured networks works wellfor discovering popular
data because a query can be propagated to a large number of nodes with a relatively
low TTL, i.e., low number of hops [3, 6], and popular data items have a high replication
factor in the network [7]. However, for rare items, message flooding in unstructured
networks performs poorly as it consumes a large amount of bandwidth due to the large
number of messages flooded into the network, queries have a high latency as it increases
which each hop until a hit is found, and it is unreliable as thesearch has a low probability
of reaching a host which has the required data.

In contrast, DHTs offer a very good search performance, typically O(logn), for
any data item in the system independent of its popularity andbandwidth consumption
is low. However, DHTs require sophisticated protocols to deal with network dynamics
(churn) and still only support queries of limited expressivity. Moreover, DHTs are com-
monly not optimized for mass-market file sharing applications, where most requests are
for a small number of very popular files and where network churn is extremely high.
Therefore, the rational of the approach presented in this paper is to use Gnutella as the
basic communication infrastructure to connect peers and perform popular searches, and
to use a DHT to publish and query for rare items.

3.1 Defining rare data items

The basic design question for such a hybrid system is, how rare data items are defined.
Previous studies [8, 9, 7, 6] have evaluated the data distribution in Gnutella but have
mostly used simulations or produced artificial queries to measure query replies and
result sets. Moreover, these studies have focused on network characteristics such as
overall query and file distribution across connected peers.In contrast to these studies
we need user-centric statistics in order to gain knowledge of individual peer behaviors.

To this end, we had to perform a number of experiments to collect the required
statistics. We deployed 50 ultrapeer nodes on PlanetLab [10] and linked them into the
live LimeWire network. These nodes ran a modified LimeWire client and recorded
queries and corresponding results in the Gnutella network.More precisely, we used
ultrapeer probes with a custom implementation of the LimeWire core and performed
passive measurements, i.e., measurements that did not interfere with the network by

4

actively generating messages. In the experiments we recorded more than 100’000 in-
coming queries which produced over 4.5 million results. Three sets where produced
by the probes on 19/01/2006, 21/01/2006 and 29/01/2006, recording queries for 1 day
in the first experiment and for 2 days in the other two experiments. To normalize the
statistics, the following changes were applied to the data sets:
1. Queries that did not complete because the leaves disconnected from the ultrapeer

before the end of the search, were discarded, as this does notprovide relevant in-
formation.

2. Leaves have 3–5 open ultrapeer connections. Even though the probes have been
deployed in dispersed locations around the world, some leaves connected to more
than one probe at a time. This led to duplicate entries in the data set. These were
identified and removed.

3. When leaves receive enough results (150 in LimeWire), they notify their ultrapeers
to stop querying the network byQueryStatusResponse as described above.
We have therefore replaced the value of the result set of these queries with the fol-
lowing formula:f() = 150�d�1 , where is the result set size currently recorded
by the probe andd is the out-degree of leaves. This formula calculates the average
number of results returned by each of the leaf’s ultrapeers.As the leaf has received
150 results in total, it means it has received150� results from its other ultrapeers,
which we finally divide by the out-degree minus the probe to find the average num-
ber of results routed per ultrapeer.

3.2 Experimental results

Query latency and result set size. Our first goal was to gather information on the query
popularity of individual queries to assess the possibilityof improvements to the current
network. Figure 1 shows the cumulative distribution function (CDF) of query times
recorded in the experiments.

A query stops only if it was successful and has generated enough results, or in
the case of a failure, when the maximum search time has elapsed, i.e., 200 seconds
in LimeWire. The first observation from this data set is the discontinuity in the query
times which is due to the dynamic querying mechanism as it adapts the TTL of the
search message depending on the query popularity. Searchesare first sent to a small
set of peers, and the search horizon is then increased progressively if necessary. This
creates the waves of results in the figure. The second observation, which is the most
relevant for our purpose, is that 80 percent of the queries are successful before 120
seconds while approximately 18 percent of searches are killed and never get enough
results.

Additionally, as shown in Table 1, successful queries generally have a good mean
response time of 15.958 seconds for the first response and a mean result set size 94.04.
The corresponding figures for queries which returned insufficient result set sizes are
138.149 seconds and 13.09 hits (these number does not include queries that did not
return any result).

These data indicate that the Gnutella network is very efficient in finding the majority
of data, providing quite large result sets in a small amount of time, but that almost 20%
of the queries could benefit from an improved resource location mechanism such as the
one we propose in this paper.

5

Fig. 1.CDF of query times

Table 1.Result set size and first result latency with respect to the query outcome

Query outcomeMean result set sizemean first response latency (sec)Total (%)
successful 94.04 15.958 81.76

failure 13.09 138.149 18.24

4 Hybrid Gnutella Topology
In order to optimally exploit both network types, it is important to use them in situations
where they perform best: Gnutella is efficient with respect to high network churn, pop-
ular files, and range queries, whereas DHT resource locationalgorithms are extremely
efficient in finding exact matches for data keys in the network, but generally incur high
efforts to deal with churn. It was therefore clear that we hadto exclude a consider-
able subset of the unstructured network, and use the DHT onlywith those peers that
could provide a higher degree of stability. As this coincides with the requirements for
ultrapeers, we decided to only use ultrapeers in the DHT.

In the resulting topology, leaves have no access to the DHT, and only a subset of
stable ultrapeers are connected to the structured network.The goal is to connect only the
innermost layers of Gnutella’s onion-like overlay, as described in [1]. This is achieved
by ensuring that only ultrapeers with a sufficiently high uptime connect to the hybrid
network. Stable ultrapeers ensure that the maintenance traffic in the DHT is minimized.

As only a subset of the ultrapeer population is stable enoughto participate in the
DHT we need to gather and disseminate stability characteristics to enable the system
to find good candidates. In addition to all the required characteristics detailed in Sec-
tion 2 to become an ultrapeer in the Gnutella network, we define an additional variable,
DHT CAPABLE, maintained by each peer, which takes into account the current session
and average session uptimes. Following the study in [1], we propose an initial minimum
session uptime of 24 hours in order to ensure that the ultrapeer is part of the stable core
of the unstructured network.

The rest of the Gnutella network does not participate in the DHT and is only allowed
to interact with it to query and publish (rare) data. Therefore, the addresses of the DHT
nodes need to be announced in the Gnutella network, which we achieve by extending
the existing ping-pong scheme, such that the pong message carries an additional ven-
dor message part containing the sender’s participation status in the DHT. This method
does not add any additional overhead to the network, as we just add a small piece of
information to standard ping-pong interactions which alsodoes not break compatibility
as we follow the recommended procedure for extensions to Gnutella.

Consequently, regular ultrapeers hold an additional routing table of hosts connected
to the DHT to which they can route DHT-related messages. We introduce two new ven-
dor messages into the Gnutella protocol:DHT QUERYREQUESTandDHT STOREREQUEST,
which are used by leaves and non-DHT ultrapeers to interact with the structured overlay.

6

When a peer wishes to query the DHT, it sends a GnutellaQueryRequest message
encapsulated into aDHT QUERYREQUESTmessage to a DHT peer it knows. If the peer
sending the query is a leaf node shielded by ultrapeers, it sends the message to one of
its ultrapeers which forwards it to a DHT node. Subsequent interactions, such as return-
ing results or downloading data, are done through the standard Gnutella protocol. The
DHT STOREREQUEST is used to insert rare data into the DHT and is handled in the
same way as theDHT QUERYREQUEST message.

5 Hybrid Resource Location
Our hybrid system strives to provide better resource location by combining the advan-
tages of unstructured and structured networks. However, this can only be achieved by
relying on techniques that optimize the use of both networksdepending on query pop-
ularity. In the following we propose algorithms that can be applied in a hybrid system
based on the Gnutella network. We do not provide exact tuningparameter values for
the variables introduced in these algorithms, due to the fact that the optimum behav-
ior of the overall system has to be determined through a large-scale deployment and
continuous empirical studies which are on the way at the moment.

5.1 Dynamic Querying

The dynamic querier in LimeWire tries to efficiently locate resources in the unstruc-
tured network. It trims the message flooding to match query popularity and controls the
aggressiveness of a search. It is hence straightforward to integrate the DHT search into
the dynamic querier. Listing 1.1 shows the hybrid search algorithm we use at ultrapeers
participating in the DHT:

1 fo r q u e r i e s i n d y n am i cq u e r i e rf
2 whi le (t < QUERY TIMEOUT)f / / t h e dynamic q u e r y i n g t i m e o u t
3 i f (! fo rwardedToLeaves)f
4 fo rwardQueryToLeaves () ; / / f i r s t sen d q u ery t o our d i r e c t l e a v e s
5 fo rwardedToLeaves =t rue ;
6 g
7 e l s e i f (! sen tProbeQuery)f
8 sendProbe () ; / / t h e n sen d p ro b e q u ery t o e s t i m a t e d a t a a v a i l a b i l i t y
9 sen tProbeQuery =t rue ;

10 g
11 e l s e i f ((! quer iedDHT) AND
12 ((t > FIRST T DHTLIM AND r e s u l t S e t == 0) OR
13 (t >= T DHTLIM AND r e s u l t S e t< RESULTSET DHTLIM)) f
14 sendDHTQuery () ;
15 quer iedDHT = t rue ;
16 g
17 g
18 e l s ef
19 sendDynamicQuery () ; / / An a d a p t a t i v e�TTL q u ery i s s e n t i n G n u t e l l a
20 g
21 g
22 g

Listing 1.1. Hybrid dynamic querying algorithm

The dynamic querier starts by sending the query to all the ultrapeer’s direct leaves.
Next, it dispatches the probe query, which enables it to estimate the data availability for
this query. If a certain time expires, which was allocated for standard Gnutella queries
to return meaningful results, i.e., the query is supposed tobe rare, it queries the DHT
for results. The criteria when to query the DHT are derived from our empirical studies
presented in Section 3.2 and are as follows:� Our empirical studies show that more than 99 percent of the successful queries

get their first result before 100 seconds. We therefore decided to start querying
the DHT if no results have arrived before that time. To that end, we introduce a
FIRST T DHTLIM constant.� Only searches that did not return enough result withinT DHTLIM time are taken
into consideration. This timeout is set to 120 seconds. The minimum result set size

7

is determined byRESULTSET DHTLIM, which we set to 23, as it is the average
size for unsuccessful queries in our experiments.
For this algorithm to work we require the leaves to implementthe standardQueryStatusResponse

synchronization mechanism to notify their ultrapeer if they received enough results
through out-of-band replies.

5.2 Managing rare data in the DHT
Publishing rare data in the DHT is a non-trivial problem, as individually at each peer
there is no a-priori knowledge on the availability of a particular file in the network. As
the hybrid system only uses the DHT for rare files, it is also not an option to system-
atically allow every host to publish information about its entire data library. Thus we
propose the following techniques for publishing data to theDHT:

Client-based publishing. The first mechanism for client-based publishing we sug-
gest is to associate a counter with each data item shared by a peer. This counter is
persistent over sessions and counts the requests received for a data item over a period
of time to assess its popularity. When the client detects that the demand for a particular
item is low, it sends aDHT STOREREQUEST to store it in the DHT layer.

The second mechanism for client-based publishing is a two-step process that relies
on file downloads. When a peer downloads a rare file, i.e., witha low number of loca-
tion, it adds itself to the DHT as an additional location using DHT STOREREQUEST.
If the location the file was downloaded from did not exist in the DHT yet, the peer also
inserts the original location into the DHT. Additionally, to comply with Kademlia’s
specification, we require every peer to republish its data every hour so that the DHT can
expire values for disconnected hosts after this timeout. When a host starts a new session
with a different IP and port, it republishes all its data, such that the new values erase the
previous ones.

Network-based publishing. Ultrapeers have two opportunities to detect and publish
rare data items in case the search is proxied. The first is after the dynamic querier stops
because it did not get enough results before the timeout or because it contacted too
many hosts. In this case the dynamic querier iterates through the list of the replies that
have arrived and publishes rare files as shown in Listing 1.2.

1 i f ((t > QUERY TIMEOUT) AND (r e s u l t S e t< RESULTSET DHTLIM))f
2 f o r each r es p o n s e i n query . r es p o n s esf
3 i f (isSpam (r es p o n s e))cont i nue ; / / don ’ t p u b l i s h spam r e s p o n s e s
4 e l s e f
5 i f (r es p o n s e . numberOfLocat i ons< NUMLOCS DHTLIMIT) / / low f i l e a v a i l a b i l i t y
6 pub l i shDHTFi le (r es p o n s e) ;
7 g
8 g
9 g

Listing 1.2. Post-query publishing algorithm

The only additional variable introduced in Listing 1.2, with respect to the hybrid
resource location algorithm, isNUMLOCS DHTLIMIT. It ensures that replication of
the data to be inserted is really low and is an additional protection against spam, as
malicious nodes that systematically answer queries also fake a large number of available
locations. We use an initial value of 2 for that variable (based on heuristics).

The second opportunity to publish rare files it to detect lateresponses. When a query
is unpopular, it incurs a large number of hops before reaching a host that has the data.
Consequently, some responses may arrive after the dynamic querier stops, and must be
intercepted and published in the DHT using the same conditions as above.

Finally, as a prerequisite for both techniques, the ultrapeer has to verify that the
file it wants to publish is not already in the DHT. As the resource location algorithm
presented in Listing 1.1 queries the DHT for rare items, it isstraightforward to know if

8

the element that is going to be published is already stored inthe structured overlay or
not. For each search, the ultrapeer therefore keeps track ofthe responses received from
the DHT and compares those with the file it wishes to publish before doing so.

5.3 Removing popular data from the DHT

The popularity of a file in the DHT can be measured by the numberof times it has been
downloaded. With client-based publishing, peers search the DHT for a file, download
it, and add themselves to the list of locations available forthat file. Therefore, it is easy
to detect and remove entries in the DHT which have become popular: If the number
of locations for a DHT entry goes beyond a threshold (NUMLOCS LIMIT), this means
that the file has in fact become popular and thus is no longer tobe considered a rare
data item and can simply be removed from the DHT. In our hybridimplementation,
this is accomplished by storing an empty value for a given key, i.e., the correspondinghkey; originatorNodei entry in the DHT is deleted.

6 Experimental evaluation
To fully evaluate our system, a large-scale deployment of our hybrid client would have
been required. As this was not feasible, the goal of our evaluation has been to simulate
queries for rare data items available in the Gnutella network and in the DHT and analyze
both networks’ characteristics and behaviors. Our evaluation was therefore focused on
the efficiency of our hybrid algorithms in detecting and publishing rare items in the
structured overlay.

In the experiments we deployed 50 hybrid ultrapeers on PlanetLab [10]. Each ultra-
peer ran on a dedicated PlanetLab node. Then the ultrapeers were connected to the live
LimeWire Gnutella network (approximately 4 million users during the experiments)
and the Azureus Kademlia network (approximately 800 thousand users during the ex-
periments). Then we used the network-based publishing algorithm presented in Section
5.2 to publish rare data items returned in the responses of queries coming from the
LimeWire leaves connected to our hybrid ultrapeers. After afew hours—to receive suf-
ficient amounts of rare data items—we issued queries for rarefiles by iterating through
rare files published in the DHT, simultaneously querying theGnutella network and the
DHT, and recording the latency of the search for both networks.

In the setup of the experiments we also considered the following issues:
Data availability: As the DHT only indexes rare data but does not store the cor-

responding physical files, a search may succeed but the storing peers may be offline.
In Gnutella in contrast, only nodes that have the queried filerespond to a query. To
make a fair comparison between both networks, thus we had to ensure that the nodes
holding rare files indexed in the DHT were still online duringthe test. To that end,
we systematically sent a ping message to every host before starting the tests to verify
their availability. As firewalled hosts are shielded from this kind of traffic, we could not
include them into our evaluation.

Node availability: In LimeWire’s implementation, a node does not answer queries
in the case that it cannot upload the data, for example, when the node already has too
many open connections or when the node only has parts of the data item. Thus ping mes-
sages were not sufficient to verify that the node could respond to a query. To get around
this problem we additionally used LimeWire’s proprietaryHEADPING andHEADPONG
messages, where the latter contains information about the availability of the file and the
node.

Query trimming: Our first evaluation showed a linear increase in the DHT’s re-
sponse time. That was due to the fact that each hybrid ultrapeer was starting thousands

9

of queries simultaneously on the DHT, and that each query performs multiple lookups
in parallel. In order to correct this, we enforced a 5 secondsbreak between the queries,
in order not to overload the system.

Unbiased routing tables:After the collection phase of rare data items, we reinitial-
ized the Gnutella and Kademlia routing tables of each hybridultrapeer before starting
the query experiments. This ensured that the routing tableswere not biased towards con-
tacts that had already been seen while intercepting queriesand publishing data items.

The results presented below have been recorded on 08/02/2006,09/02/2006, 11/02/2006,
12/02/2006, 14/02/2006 and 15/02/2006.

For the Gnutella overlay the query success rate was 27% with amean query latency
of 75989ms, while the DHT had 99% success rate with a mean latency of 3878ms.

Although we only queried for rare data which was available inthe network (data and
node availability was ensured as described above, Gnutellacould only find 27 percent
of these data items, whereas the DHT had a success rate of 99 percent. The missing 1
percent is due to individual node failures in republishing data in the DHT. Moreover, the
search latency for the DHT is approximately 20 times lower than Gnutella’s. As shown
in Figure 2, more than 50 percent of the answers from the DHT come in less than a
second, even though 800’000 nodes participated in the DHT during our tests (the figure
shows only the first 5 seconds of the full plot which was the most interesting interval
for us; thus the CDF does not reach 100%).

These results prove that our algorithms were successful in identifying and publish-
ing rare data items, and show the potential gain in success rate and latency. As expected,
they demonstrate Gnutella’s unreliability and inefficiency in finding rare items.

In order to evaluate the influence of the parametersRESULTSET DHTLIM (result
set threshold for unsuccessful queries) andNUMLOCS DHTLIMIT (replication thresh-
old) discussed in Section 5, we split the hybrid ultrapeers into four groups with different
combinations of these parameter values: Group 1 – (10, 1), Group 2 – (20, 1), Group 3
– (30, 1), and Group 4 – (30, 3).

Figure 3 shows the search success rates for Gnutella for the different groups. The
figures indicate that relaxing the parameters that select rare files directly affects the
efficiency of the hybrid platform. This test also demonstrates the importance of fine-
tuning the hybrid algorithm’s parameters in order to stop the Gnutella network’s query
message flooding at the optimal time.

Fig. 2.DHT search latency

Fig. 3.Success rates for different parameters

10

The bandwidth overhead in the hybrid approach mainly consists of the bandwidth
required to insert data items into the DHT, i.e., the lookup costs to find the node to store
the value plus theput message’s size. The lookup cost is a function of the network’s size
and the degree of parallelism of the system, which is represented by the� parameter
in Kademlia. If for each hop,� nodes are contacted (� = 4 in Azureus) and we need
approximately 20 hops to reach the target in a network of 800’000 connected Kademlia
nodes, a rough estimate of the number of required lookup messages is 80 messages of
size 297 bytes (41 bytes header + 256 bytes data), i.e., 23760bytes overall in the DHT
per insert operation. Querying produces a similar message load.

By analyzing the statistics from our plain Gnutella ultrapeers, we see that the av-
erage number of nodes queried for searches that last less than 100 seconds is 73’710,
while the average number of nodes queried for searches that last more than 100 seconds
is 697’050, i.e., use 10 times more bandwidth. Consequently, if the longer queries are
performed through the DHT, we should be able to reduce the message flooding in the
network by approximately an order of magnitude. Therefore,even after adding main-
tenance, publishing and querying, the DHT can potentially be of great benefit to the
Gnutella network.

Finally, load balancing in the hybrid system is automatically done by removing
overly popular queries from the DHT. With the algorithms presented in Section 5.2, only
items belonging to the tail of the file distribution in the Gnutella network are inserted
in the DHT. Consequently, these items should never generatea high demand at a single
node.

7 Related Work
Our approach extends the case for a hybrid search infrastructure made in [7]. This paper
provides an initial proof-of-concept proposal for a hybridsystem, but does not define
the topology of the hybrid Gnutella network and the requiredinteractions to an extent
necessary to assess the practical applicability of the proposal. Furthermore, it does not
take into account the recent Gnutella improvements which weuse to greatly improve
on some of the described problems. Our contributions beyondthe work described in [7]
are:

Our proposal tightly integrates hybrid querying and data publishing algorithms into
the most recent Gnutella specification and provides a real-world, large-scale, experi-
mental evaluation of the algorithms in a live Gnutella network to back up our claims.
By exploiting the hybrid dynamic querying mechanism, rather than using a fall-back
approach as proposed in [7], we not only improve the search delay but also effectively
reduce the bandwidth of Gnutella’s message flooding technique by an order of magni-
tude. Furthermore, the “selective publishing” technique proposed in [7] cannot be used
by itself due to the redundancy and transience of Gnutella’sultrapeer-to-leaf connec-
tions. In contrast, we propose a client-side data publishing algorithm that monitors the
data and behavior of peers in order to discover rare data items.

We extend the Gnutella protocol and the ultrapeer election techniques to be able to
selectively build the DHT, and provide the nodes in the unstructured network with the
means to discover and bootstrap to the structured network.

We provide a detailed description of the subsequent interactions between the struc-
tured and the unstructured overlay in order to achieve a stable and scalable system.
Additionally, we address the possibility of a surge in the popularity of a data item and
propose techniques to deal with that situation.

We address the problem of spam in the Gnutella network which can seriously impact
on the detection of rare queries and deal with the consequences for a hybrid querying
technique.

11

The work of [7] is extended in [11]. In contrast to the work presented in this paper,
[11] does not propose a concrete hybrid network topology as it does not discuss the
strategies how and when nodes connect to the DHT, whereas we propose a scalable
architecture and extensions to the existing Gnutella network interactions in order to
facilitate DHT node discovery.

[11] also proposes that the rare files of Gnutella leafs are only identified and pub-
lished by their ultrapeers. This is not feasible for the following reasons:

Leafs are connected to 1–5 ultrapeers at the same time which means that rare files
are published multiple times as the paper does not address this redundancy. Addition-
ally, ultrapeer-leaf connections can be very transient. Thus the leaf can drop connections
and select better ones as well as ultrapeers can drop connections to their leafs. Both will
result in considerable redundant publishing which is not addressed. Ultrapeers have
very limited knowledge of a leaf’s files as only a bloom filter is used in [11]. This does
not provide the required information. If the proposed solution as used in the experimen-
tal deployment of [11] is to use theBrowse Host Gnutella protocol message to list all
the leaf’s files, then this solution is obviously not scalable. Only leafs can effectively
monitor the hit rate on each of their files, i.e., how often a file is searched and how
often it is published. Thus, leafs should also be part of the identification and publication
process of rare data item. Our paper proposes a client-basedpublishing mechanism to
address this.

Also [11] does not address the very probable situation of a surge in a file popular-
ity while we describe and propose a solution to that problem.The proposed analytical
model does not take into account dynamic querying, which already limits Gnutella’s
bandwidth consumption considerably. And in contrast to ourwork, [11] does not ad-
dress the additional problem of spam and how it particularlyaffects rare queries.

The implementation presented in [11] is based on PIERSearch, which offers keyword-
based searching through inverted lists on files and distributed joins in the DHT. Al-
though the paper acknowledges the problem of hotspots in DHTs, it does not explain
how the inverted index will work with popular keywords. As we, the approach in [11]
selects only rare files for publishing. However, file names for rare files can and often will
contain very popular keywords. Therefore, a system based onkeyword search seems to
be of limited feasibility in real-world scenarios.

Our paper fully integrates the use of the structured networkinto the current Gnutella
standard by taking advantage of the dynamic querying technique, extending the existing
Ping/Pong scheme to ensure that nodes are able to bootstrap to the DHT at any given
time.

Other related work includes the approach by Castro et al. [12] which proposes a
hybrid system in which the network maintenance is handled bya structured network
and the search and data replication is done in an unstructured network. This study is
based on the obsolete original Gnutella network and therefore is not applicable to the
current Gnutella system anymore.

Several other approaches [13, 14, 3, 15] have tried to address the scalability prob-
lems of the original Gnutella protocol by modifying the network topology, the query
algorithms or the data replication strategies in the network. These approaches have pro-
posed techniques that exploit node heterogeneity and introduce some flow control for
queries, techniques which are now already included in the current Gnutella standard
which we base our approach on.

8 Conclusions
In this paper we have presented an extension of Gnutella witha DHT to address the
problem of queries for rare files, which are approximately 20% of the total queries in

12

Gnutella but account for significant network traffic. We presented experimental results
from a large-scale experimental study that show that Gnutella handles such queries
very inefficiently und unsuccessfully and that such queriescause excessive bandwidth
consumption. Our hybrid approach uses Gnutella for popularfiles which it can handle
efficiently and a Kademlia DHT of ultrapeers for rare files. Wepresented the algorithms
to set up the hybrid infrastructure, to detect and manage rare data items, and to query for
such data, and demonstrated the efficiency and validity of our approach by a large-scale
experimental deployment in the live Gnutella (4 million users) and Azureus Kademlia
(800 thousand users) networks. Our results show that Gnutella can benefit considerably
from our hybrid approach as it increases success rates from 27% to 99% and decreases
bandwidth consumption by an order of magnitude. The experiments were done with
a production-quality implementation which will be included into the LimeWire P2P
software.

References
1. Stutzbach, D., Rejaie, R.: Characterizing UnstructuredOverlay Topologies in Modern P2P

File-Sharing Systems. In: Internet Measurement Conference. (2005)
2. Jovanovic, M., Annexstein, F., Berman, K.: Modeling peer-to-peer network topologies

through small-world models and power laws. TELFOR (2001)
3. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-

to-peer networks. In: International Conference on Supercomputing. (2002)
4. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A Measurement Study of Peer-to-Peer File Sharing

Systems. In: Proceedings of Multimedia Computing and Networking. (2002)
5. Maymounkov, P., Mazieres, D.: Kademlia: A Peer-to-Peer Information System Based on the

XOR Metric. In: First International Workshop on Peer-to-Peer Systems (IPTPS’01), London,
UK (2002)

6. Stutzbach, D., Rejaie, R., Zhao, S.: Characterizing Files in the Modern Gnutella Network: A
Measurement study. In: SPIE/ACM Multimedia Computing and Networking, San Jose, CA
(2006)

7. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: The Case for a Hybrid P2P Search
Infrastructure. In: 3rd International Workshop on Peer-to-Peer Systems (IPTPS’03). (2004)

8. Chu, J., Labonte, K., Levine, B.N.: Availability and locality measurements of peer-to-peer
file systems. In: ITCom: Scalability and Traffic Control in IPNetworks. (2002)

9. Klemm, A., Lindemann, C., Vernon, M., Waldhorst, O.: Characterizing the query behavior in
peer-to-peer file sharing work-loads. In: Internet Measurement Conference, Taormina, Italy
(2004)

10. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.:
PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM SIGCOMM Computer
Communication Review33(3) (2003)

11. Loo, B.T., Hellerstein, J.M., Huebsch, R., Shenker, S.,Stoica, I.: Enhancing P2P File-Sharing
with an Internet-Scale Query Processor. In: 30th International Conference on Very Large
Databases (VLDB). (2004)

12. Castro, M., Costa, M., Rowstron, A.: Peer-to-peer overlays: structured, unstructured, or both.
Technical report, Microsoft Research, Cambridge, UK (2004)

13. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making Gnutella-like
P2P Systems Scalable. In: ACM SIGCOMM. (2003)

14. Krishnamurthy, B., Wang, J., Xie, Y.: Early Measurements of a Cluster-based Architecture
for P2P Systems. In: ACM SIGCOMM. (2001)

15. Osokine, S.: The Flow Control Algorithm for the Distributed ’Broadcast-Route’ Networks
with Reliable Transport Links (2001) http://www.grouter.net/gnutella/flowcntl.htm.

13

