
1

HYPER-LINKED SOFTWARE ARCHITECTURES FOR CONCURRENT ENGINEERING1

Juan C. Dueñas
ETSI Telecomunicación

Universidad Politécnica de Madrid,
Ciudad Universitaria, sn, E-28045 Madrid, Spain

E-mail: jcduenas@dit.upm.es

Manfred Hauswirth
Distributed Systems Group

Technical University of Vienna
Argentinierstr. 8, Vienna, Austria

E-mail: m.hauswirth@infosys.tuwien.ac.at

1 This work was partially funded by ASIA (Austrian Spanish Integrated Action) “Open Distributed Processing for Remote Collaboration.” and by the ARES
(Architectural Reasoning for Embedded Software) project. ARES is supported by the European Commission under ESPRIT framework IV contract no. 20477 and is
pursued by Nokia RC Finland, ABB Norway, Philips RC Holland, Imperial College, Universidad Politécnica de Madrid, and Technical University of Vienna.

KEYWORDS

Software architectures, hyper-linked information systems,
concurrent engineering, World Wide Web.

ABSTRACT

In this paper, the idea of considering software architecture
(SA) as a tool for the gradual introduction of Concurrent
Engineering (CE) issues in the industrial area is explored.
SAs are placed among the first steps in the development of a
large software system. Using them following the principles
of CE implies some requirements on the supporting
infrastructure, that can be met by hyper-linked information
systems. The quickly growing World Wide Web (WWW)
system fits all the requirements expressed, and makes a
realistic choice for a gradual introduction of SA in
production environments. It also serves as an integration
framework for tools dealing with SA reasoning. For these
reasons, it can be used to provide services oriented towards
helping designers in the discovery, communication, and
evaluation of software designs in an incremental way.

SOFTWARE ARCHITECTURES

Software architecture (SA) has been recently described as "a
communication technology for the development of software
systems, instead of a software engineering technology"
(Brown 1996). We can find almost as many SA definitions
as researchers are, but almost all of them coincide to include
in the definition both models of the system being built, as
well as constraints or guidelines for design (Shaw and
Garlan 1996). This coincidence reflects a common
understanding about the final users of SAs: the people
developing the system. To be more specific, groups of
people working on the developing system. The main uses of
the SA can further clarify its actual objective as a
communication technology.
SAs are used for teaching newcomers the basics of systems
being built. In this case, the main advantage of using a SA
is that it gives an abstract overview of the system, helping
developers to find their working context (this is especially
needed when “programming in the large”). It is also worth
noting that SA has been proposed by some authors as the
foundation of Software Engineering teaching, in the form of
paradigmatic solutions for well-known problems, using
architectural styles (Buschmann et al. 1996).

In the initial phases of development, SA helps to
understand the system requirements and guide the
discussion on features and resources required. In fact, the
initial design decisions are proven to be crucial for the
future system quality, and they must be taken with the
agreement of different stakeholders (perhaps with different
backgrounds). Then, SA acts as a "common ground" to all
of them, facilitating the discussion in terms easily
understood by all of the group.
The assessment (on objective or subjective basis) of the SA
with respect to quality requirements (mainly concentrated
on non-functional ones) is an important use, often done by a
group of experts working on the same model. For this
matter, we propose to link all the information regarding the
objective or subjective decision making process to the SA
models.
SA can be used as a reengineering vehicle for the
maintenance and improvement of the current systems. It is
a recognized fact that some of the main efforts towards SA
research are driven by large companies with long life span
systems that would need to be improved, and the very first
step towards that is obtaining the "conceptual integrity"
(Brooks 1996) of these very large systems. It would also be
of primary importance to obtain the design trajectory for the
decisions taken on the system during its life cycle. In this
aspect, the usage of reengineered models to discover
structural or behavioral patterns (Mendoza and Kramer
1997) could lead to obtain the “hidden” architecture.
Unfortunately, there is no evidence towards a possibility of
solving this automatically at this moment, so the only choice
is human inspection (Eixelsberger et al. 1997). Again, the
documentation nature of SA appears.
The model portion of the SA is valid in the development
process to assign work loads or to define subsystems to be
developed by different work groups. But the guidelines
included in the SA are even more important for the
controllable and repeatable design and implementation of
the system. Initially, these guidelines can be handled as a
"Frequently Asked Questions" list, or as a company’s style
book. Our proposal is to give access to this information in a
context-sensitive way, and offering several views depending
on its intended use.
The SA evolves in time, acting as a design trace on the
development of systems of related domains. Initially, the
SA composed by the Architecture Description Language
(ADL) models (Carnegie Mellon University 1997b) and the
guidelines should be enriched adding information about
previous systems developed. Then, the SA should be

2

modified accordingly to the incremental evolution of the
systems; and, as soon as major improvements are added to
the development process, the set of guidelines must change
to accomplish them. The SA can be searched for previous
design decisions or to reuse parts of the architecture.

HYPER-LINKED DOCUMENTATION SYSTEMS

A hyper-linked documentation system (Conklin 1987) is
such that the contents are not arranged in an sequential way
but they are organized in several chunks of information and
links between them, so that the overall organization is
determined by these links. No restrictions are imposed on
the information content. Thus a hyper-linked documentation
system (HLDS) breaks up the linear documentation
paradigm of conventional paper or electronical
documentation. Though linearity is still possible this is
replaced by a navigation paradigm that allows placing
related information “at hand”, i.e. close to referrals. E.g.
hyper-links can be added (attributed) to flow text, (regions
of) pictures, etc., to facilitate references, i.e. related
information, to other chunks of information that can be
“visited” by simple mouse clicks or keyboard commands
(Fig. 1). Hyper-links add a high degree of flexibility to a
documentation by allowing numerous tracks for traversing
the documentation depending on the reader. From the SA
perspective it would mean that each role has different path
through the hyper-linked documents, depending on his/her
interests.

Logical View

Process View

Development View

Physical View

Public Annotations

Private Annotations

Development

View

Public

Annotations

Process View

Figure 1: Hyper-linked documentation

Moreover hyper-linked documentation can gain an even
higher degree of versatility by separating base information
and navigation information, i.e. documents and navigation
links are generated dynamically, e.g. from a database,
dependent on user’s configuration and/or navigation history.
Thus the delivered document is both dynamic in its contents
and navigation infrastructure included therein. Again this
flexibility allows that, starting from the same basic chunks
of information several sets or “views” can be obtained.
In its application to SA representation hyper-linked
information systems are especially suitable because of
several reasons.
Information model. In SAs, information comes from two
sources: models and guidelines. Models usually contain the
components, the connectors and the information required to

define their interactions, sometimes in a graphical way.
The syntax of the models depends on the architectural
description language (ADL) used. On the other hand,
guidelines for design decisions encapsulate the “know-how”
about the SA and design. Since this last source of
information is more general, there is no easy way to
represent it, other than natural language. This kind of
information is sometimes structured in lists of questions and
answers (the “Frequently Asked Questions”).
Both pieces of information must be linked. It is then
possible to know the guidelines applied in the development
of each piece of the architecture, or�given a certain
module�to obtain which possibilities exist for further
improvement, based upon the application of the guidelines.
This is the main missing point when traditional approaches
are used in the documentation of SAs: the lack of hyper-
links makes it difficult to navigate among the several useful
chunks of information that build up the SA.
Additional sources of information, as records of design
decisions, rationales, design trajectories, or timing
information, can be included in the SA description by the
same means. Even more, the existence of hyper-links allows
to define several views on the information stored, depending
on its purposes, the role of the viewer, etc.
CE support. The creation and usage of SAs are group
activities in which different partners co-operate to reach
balanced solutions that face both the quality and functional
requirements. At the very beginning, there is only one
group working towards the first model and set of guidelines;
after that, and once the abstract SA has been created, the
refinements to each of the modules and connections in the
SA can be done in parallel by different work groups
operating on subsets of the whole model. HLDSs can
support this, since there is not a single block of information
over which all the work is done, but the information is
distributed in small chunks that can be modified and
updated in parallel. This can be done in a distributed way
among the participants.
As always when different groups are working on models,
not all the parts of models advance or mature at the same
speed. Thus, the degrees of abstraction vary in the whole
model, and heterogeneity appears. In the case of SAs there
are other additional sources for heterogeneity: the different
nature of ADL models and guidelines, and the possibility of
using the SA for different purposes implies that several
heterogeneous views of the system must be offered.
Regarding this, it is important to note that the basic
mechanisms of hyper-linked systems are able to handle
heterogeneity, provided that models or information can be
enriched with the links. Information nodes can hold
information with very different nature.
As a subsequent requirement, the SA support must be
available throughout all the life cycle, from its inception to
the maintenance phase. This situation is dealt with in the
same way like heterogeneity, ensuring that the same
underlying supporting system is able to be used for any kind
of model, regardless of its maturity.
When tool support is provided such that the links between
information nodes can be distributed geographically, these
nodes can be physically close to their information sources,

3

but the distribution is hidden. In fact, what appears is a
virtual workspace shared by all the SA creators and users,
regardless of their locations. This fact is very convenient if
different stakeholders or different experts will participate in
the creation, assessment or usage of the SA, perhaps from
different business units in the company.

FRAMEWORK FOR A CONCURRENT
ENGINEERING SYSTEM

The World Wide Web (WWW) framework (Berners-Lee et
al. 1994) is a well established hypertext system that can be
used to implement a HLDS for CE support. It does not
impose constraints on the contents it holds and is inherently
distributed, and can easily be adapted for SA representation
and management. Figure 2 shows the overall structure of a
HLDS for SAs. We want to point out that this design does
not necessarily need WWW or a WWW client as depicted in
Figure 2. It can be used with any system that offers similar
hypertext facilities like WWW. In this framework the
WWW client only represents the visualization aspects of
the system. Nevertheless, we will stick to WWW in the
following since it is the most widespread used and
understood system nowadays that offers the highest degree
of support, on nearly all software platforms.

Information

Dissemination

Base

Information

Decision

Support

Data Control

Annotations

WWW client

Figure 2: Basic system structure

The following table gives an overview of the characteristics
of the subsystems:

Annotation Information
Base

Decision Support Information
Dissemination

Functionality locally
focussed
links /
information

presentation,
navigation

integrate new
information and
annotated
information into
information base

report changes
and keep
developers and
architects up-
to-date

Data informal
PostIt
data

committed
design
information

dependent on
decision technique

changes to the
information
base

Format free HTML,
pictures,
VRML,
multi-media

dependent on
decision technique

e-mail, HTML,
Java objects

Tools Java databases,
file system

Quality Function
Deployment

e-mail tools,
Castanet,
Pointcast, etc.

Information Base

The information base subsystem (IBS) is a central part of
the system whose functionality is :
• to generate the data related to the SA, retrieving it from

a development database, extracting from metric
extractors, etc.,

• to store, handle, and provide navigation information, in
order to allow the users to handle the information
efficiently,

• and to pre-process the information in a consistent format
that hides the heterogeneity of internal data.

Logical View 1 Process View 1 Development View 1 Physical View 1

Logical View 2 Process View 2 Development View 2 Physical View 2

Views

Variance

Abstraction

Figure 3: Logical Information Base Design

With respect to the SA data maintained under the control of
the IBS, it can be seen from different axis (see Fig. 3):
1. The architectural view (Kruchten 1995), there are

several views to see the high-level design of the system.
Depending on the special feature we are interested in:
the logical view provides the functional design,
containing the main abstractions necessary to fulfill the
functional requirements ; the development view focuses
on the organization of the actual software modules and it
is thus closely related to the way the organization is
structured; the process view focuses on the runtime
behavior of the system, and the physical view shows the
mapping of software onto hardware.

2. The abstraction axis. Each one of the mentioned
architectural views is formed by hierarchical nodes and
arcs, able to be decomposed as the development evolves.
Thus, the first views give only a hint of the main
elements in the system. As it evolves, more refinements
are added, giving more details about nodes and arcs.
These refinements of the views define the abstraction
axis.

3. The variance axis. SAs are blueprints for families of
products. There is no point in producing a SA, unless
several related products are done, and they share large
parts. The variance axis shows how the system once
developed evolves to fit several products, the differences
between them, and the changes required to adapt to
several customers or variances.

4

Several exploration paths can be followed within this
structure, depending on the intended use and stake-
holders using the architectural information; e.g.:
• exploring one architectural view in the abstraction axis

will give the designer the complete and detailed
description of how the system is built from that view,
allowing the assessment of certain quality attributes,

• comparing the same views at the same abstraction level
but with different variance, it is possible to get an insight
of more changed parts in the system and foresee future
directions of changes.

There is no agreement in the software engineering
community to represent architectural data yet. The
proposed hyper-linked systems are open enough to handle
any kind of data. At the moment, several experiences have
been reported in the literature about using hyper-linked
systems to represent SAs (Carnegie Mellon University
1997a), there are additional standardization efforts
(Electronic Industries Association 1995) on the common
usage of engineering data, but they have not reached
widespread use in the software engineering community.

Annotations

A common situation when applying CE and having
distributed teams involved is the need for fast and easy
communication in an informal way. This can be done via
telephone, fax, email, newsgroups, etc., but this is disjoint
from the SA system itself and requires the users to “switch
context.” A better, more integrated approach is the use of
annotations, that are attached to information of the IBS for
limited (private, group) or unlimited use. The concept of
annotations can be compared to the use of PostIt notes in
real life: an engineer can attach a formal or informal
annotation to (part of) a hyper-linked document to state
comments, questions, remarks, etc. to the document and
define access rights to it.
Thus the document is enriched in an “unofficial” way. Later
if the same user or others retrieve the annotated document
the annotations will show up again depending on the access
rights.
Regardless of the concrete realization the advantage of
annotations are: persistency of annotated information,
informal and focused communication, user-defined
strategies for changing the status of annotations, i.e. how
and if annotations are invalidated or converted into IBS
information. Also, in connection with navigation
information, annotations can serve as a means for easier
understandable questions on the contents of the IBS.

Decision Support

The decision making process appears when there are several
choices to meet an architectural requirement : in producing
the software architectural models, when these models have
to be updated or when a decision on new products in the
family must be taken. For this purpose, all the available
information on the product (current architecture) and the
process (the design steps followed to achieve that product)
must be made available. As a result of the decision making

process new information is inserted into the information
base.

Decision making is an area where automatisation is hard to
achieve. The most promising approach seems to be the
Computer Supported Co-operative Work (CSCW)
techniques, e.g. (Coleman and Khanna 1995), to support the
decision making process, because eventually, group of
humans will take the decisions. This is specially clear in
the SA area, where the plain usage of metrics on models has
proved to be ineffective.

Two examples of common decision making techniques are:
• The design space technique (Lane 1990), based on

Quality Function Deployment (QFD). When a SA is to
be modified, several hypothesis are created and all the
stake-holders consider the requirements, the technical
possibilities, costs and risks and formulate their interests
on several matrices. Giving weight to each considered
factor, it is then possible to achieve and agreement on
the technical features that the system must include. The
decision support subsystem provides allows the users to
create such matrixes, and to communicate and collect all
the data from the decision group.

• The design decision trees technique (Ran and Kuusela
1996): for a lower level in the design, when the current
design decisions can be codified, and the order in which
they must be applied is fixed, a decisions tree can be
built and explored. Each decision contains information
about when and how to apply, the way it changes the
SA, who can apply it, et cetera. All this information is
stored in the information base, and thus navigation
through the hyper-linked documentation corresponds to
the fact of applying rules; each link traversed is a
request for changing the SA model.

Information Dissemination

This is a key topic in the area of CE: how to keep
participants up-to-date with project status. Part of the
solution has already been sketched in the section on
annotations. But a more general solution is needed here.
Techniques ranging from simple e-mail notifications to
sophisticated distribution and CSCW methods can be
employed here. Regardless of the methods used, the
important issue again is the aspect of integration into the SA
system itself. The use of open technologies greatly eases
integration problems.
Besides this the Information Dissemination Subsystem
(IDS) must be flexible enough to implement user-defined
dissemination processes. After the SA system’s user has
defined a process for how to create documents aimed for
distribution and/or insertion into the IBS, the IDS offer
support for distribution of these documents. Functionalities
the IDS must offer include: definition of dissemination
priorities, consistency constraints, subscription facilities
(“info-line”), automatic and user-initiated notification,
automatic creation of meaningful notification messages, etc.
The implementation of these functionalities can already be
based on highly-functional base technologies. Their

5

usability, however, still strongly depends on the skills and
experience of the implementor.

SOFTWARE ARCHITECTURE AND HYPER-
LINKED DOCUMENTATION SYSTEMS

In this section we discuss issues how HLDSs may be used to
support development, representation, and evolution of SAs.
The current situation in industry is that a SA is often
developed once a product or set of products are successful
and their life span is foreseen to last for several years. The
major activities in developing and evolving a SA are:
1. In case a SA is to be developed for an existing system,

reengineering of the current product or set of products,
starting with all the available information (design
diagrams, code, design rationale, documentation,
interviews with architects, etc.) has to be performed.
Regarding the framework, this first step corresponds to
the creation of the information base. Although this
process involves several roles and people, it is usually
performed by a small group of “re-engineers” (Gall et
al. 1996).

2. Making decisions on the system. Once the architecture
is well defined, the validation process starts (although it
can be seen as an iterative cycle). Then the possibility to
refine or fix the architecture with respect to the current
systems exists ; additionally new components of the
product family can be developed, forcing the SA to be
adapted. For all these activities, software architects
make decisions : comparisons between several candidate
architectures, comparisons between several options to
refine a given architecture, etc. The decision making
subsystem helps the developers to carry out the decision.

3. Updating and disseminating changes. Given changes or
updates to the architecture must be noticed and
understood by all the roles involved in the architecture
life cycle, specially by their users. With respect to the
visibility of changes, there are two steps supported in the
framework:

• unofficial changes or annotations. While in the
decision making process, architects propose
changes that must be assessed. Since not proven
suitable yet, they are at the draft level.
Annotations are the way to support this step.
These annotations have reduced visibility (even
personal), and allow the group of architects to
follow a certain discussion.

• official (messaging service). When the changes
are actually performed because the assessment
was positive, a new architecture appears. The
messaging service is able to tell the architecture
users those regions updated in the architecture.

4. Groupware. It has been mentioned that SA is not plainly
the models used, but also the rationale or the rules that
guide the design. It is really important to ensure that
communication channels are ready to carry the architects
all the questions, advises and doubts from users.
Effective application of SA must rely on groupware
technologies, as those mentioned in this section, and

support the interaction between architects and users,
perhaps by the use of multimedia communications.

WWW TOOLS

As stated above, the development process for models and
systems usually is not performed in a sequential, linear way,
but it often shows high degrees of distribution and
parallelism which frequently change during the evolution of
a system. This may either be due to changing needs at
different stages of the maturation process of a system or be
caused by new design decisions or even by partial redesigns.
Thus a tool for documenting and supporting SA has to be
flexible in adopting to such changing demands. The main
facilities that WWW offers to SA creators and users are:

Openness

WWW is an open, highly dynamic domain. Due to its public
acceptance and support many tools can be integrated. On the
other hand many software companies already offer WWW
support for their products since this has become a major
advantage in competition.

Availability

Other interesting characteristics of WWW are its
availability on all platforms and its low price, which make it
suitable for a gradual introduction of SA issues in
development environments. Besides the WWW base
technologies lots of software for enhancing WWW
coverages in respects like active components, e.g. Java
(Arnold and Gosling 1996), JavaScript (Netscape
Communications Corporation 1997b), ActiveX (Cluts
1997), and systems built upon them exist and can be
exploited. As a by-product this infrastructure can be reused
in other projects since WWW is a very portable system to
base on.

Generation of Information

 As stated above contents provided on the WWW can easily
be kept up-to-date by providing dynamically-generated
documents. This can be accomplished by gateways to
existing systems, e.g. databases, versioning systems, etc.,
that hyper-text and hyper-link the information contained
therein. Also other existing functionalities like evaluation
tools, consistency checkers, code generators, decision
making support, etc. can be integrated into the WWW in
this way.

 Thus WWW is used as an integration platform for tools.
This approach is used frequently with WWW applications
based on common database systems. The generation of
documents and connection to WWW is usually based on the
Common Gateway Interface (CGI) standard (McCool 1994),
advanced technologies like the Java Database Connectivity
(JDBC) standard (Sun Microsystems Inc. 1997), or
proprietary interfaces supplied by vendors, e.g. Oracle
WebServer (Oracle Corporation 1997). These techniques are
well understood and used by many Internet sites. Besides

6

this other emerging WWW technologies like “plug-ins”
(Netscape Communications Corporation 1997a) and Java
programs can be applied, to enhance the integration process.

 Refinement of designs is mirrored on the WWW by
enriching existing coverages with new links and nodes. So
also intermediate design results (trajectories) can be
communicated easily among the project partners. Since
information gets available early in the SA definition process
(pre-ADL) more parties can participate in the exploration of
models, discuss intermediate results (annotations, integrated
talk service or newsgroups). Annotations can be integrated
with existing techniques by using additional hyper-links,
annotation windows popping up, etc. Such active
components can be implemented with new technologies like
Java, JavaScript, or ActiveX, and be based on a rich set of
existing code, e.g. Gamelan (EarthWeb Inc. 1997).
Annotations and suggestions might also be checked against
models.

 Traditional decision making tools, to define further project
steps, could also be integrated easily.

 Presentation of Information

For presentation, WWW clients are able to handle the basic
types of information (text, HTML, pictures). Additional
extensions (viewers or plug-ins) are required to visualize
complex formats (VRML, MM). A more integrated solution
that became possible with the advent of dynamic loaders is
the possibility of extending the functionality of basic clients
on-line, depending on the kind of information received.
Since the central concept of WWW are "hyper-links", i.e.
the relations between "objects", which can be defined freely,
WWW based information systems offer a high degree of
flexibility. E.g., part of a system can be seen as an entity-
relationship-diagram by defining relations accordingly and
later (or even in parallel by providing different views of the
system) be restructured by defining new (rules for) links.

 This notion of flexibility is also interesting in other respects.
One of the main advantages here is the possibility for all
participants in a project to use their favourite tools. For
interaction purposes it is of course necessary to define an
interchange format or (generic) interfaces that can be used
for automatic generation of WWW content. Among the
possibilities for presenting designs, it is important to note
the possibilities of using complex visualization tools
attached to WWW.

 Role-defined views of a SA can be defined by using
dynamically-generated documents whose hyper-link
structure is not defined statically but created according to
the needs of users (model-view-controller pattern applied to
SA representation on the WWW). A rich set of tools to
support presentation on the WWW exists. Besides
proprietary software supplied by tool vendors, free software
tools for dynamically generating pictures or creating graphs
from symbolic descriptions, e.g. (Reina 1997) are available.
To enforce consistent layout, both in terms of information
and navigation facilities, prepocessing tools like HTML++
(Barta 1995), FrontPage (Microsoft Corp. 1997), etc. can be
employed.

 Navigation

 Flexibility as mentioned before also allows to investigate

navigation strategies in order to offer the simplest,
configurable set of navigation facilities to support users in
finding the information they are looking for. E.g., facilitate
navigation between architecture and source code by hyper-
linking these two views or providing hypertexted source
code in a language sensitive way. Tools for uncoupling
information and navigation properties by the use of
symbolic link information are available, e.g. HTML++
(Barta 1995).

 One navigation strategy especially suited to support the
teaching aspect of SA are "guided tours", where inherent
knowledge of both the SA and project participants can be
made explicit and thus help newcomers to quickly get an
overview.

 Additionally to a passive view model, active documents can
be helpful: users may define preferences, interests and
requirements and hand them to the system. Based on this
information active documents may perform actions like
notification on change, triggering of programs, etc. Here
triggering mechanisms of databases may be exploited.
Besides standard information dissemination techniques like
(MIME enhanced) e-mail and newsgroups, newly available
systems for actively disseminating information can be
facilitated here. Castanet (Lemay 1997), PointCast
(PointCast Inc. 1997) and other tools offer some kind of
“broadcast” mechanism where users can subscribe to
information channels and get regular information updates
automatically. Also CSCW tools like BSCW (Bentley et al.
1997) can be used here and integrated into the SA system
framework.

 A special aspect of the navigation issue are search engines
which support users in discovering information of interest.
Many sophisticated search engines, e.g. Harvest (Bowman et
al. 1994) for full-text or attributed queries, are available for
the WWW which both aid the user in finding information
and on the other hand provide facilities for automatically
indexing information (and distributing it). Thus it is easy to
provide powerful capabilities like distributed full-text search
by using a combination of WWW and search engines.

DISCUSSION AND FUTURE WORK

The work proposed is focused towards the development of
large systems, i.e. “programming in the large” (Boehm and
Scherlis 1992), whose complexity grows exponentially with
project size, due to both technical and social factors. In this
article we have studied a framework able to support the
development and documentation of software architectures as
guidelines for the design of such systems, and the use of
concurrent engineering and information sharing techniques
to incorporate knowledge from different domains.
For that purpose, the use of hyper-linked documentation
systems as a support system for the concurrent development
of software architectures is discussed. A framework for the
organization of tools and the usage of WWW technology is
proposed. Amongst the advantages that can be cited for this
framework, the main ones are :

7

• that it allows the provision of new services for the
development of complex systems obtaining extended
functionality as the integration of existing products,

• this technology is available at low cost; it can solve the
“architectural mismatch” that hinders the adaptation of
required products in an engineering environment,

• the proposed framework can be incrementally built and
incorporated to the development; it is possible to reuse
previous investments and experience of companies in the
development of SA models and documentation, since its
openness fosters the creation of small tools that
incorporate previous knowledge to the information base,

• it is a simple and easy way to distribute information and
communicate, offering simple and consistent user
interfaces for the functionalities described in this article.

Our research will proceed in the framework of several
common european projects devoted to the development of
software architectures and to the distributed collaboration
using WWW technology. In the near future our research
will concentrate on the following areas :
• the application of the principles described to other

application domains apart from software development,
• the use of knowledge derived from other engineering

disciplines that have a longer tradition in the use of CE,
• and the enhancement of the WWW support to CE,

especially in the less mature fields as the decision
making process and techniques. A set of theoretically
well understood techniques exists. Since most of them
are intelligible and easy to use implementations suitable
for the WWW should appear soon. This especially hold
true because powerful implementation platforms
including GUI builders already are available; e.g., Java,
Java’s Abstract Windowing Toolkit, Bongo (Goodman
1997).

REFERENCES

Arnold, K. and J.Gosling. 1996. The Java Programming Language. Addison-
Wesley, Reading, MA.

Barta, R. 1995. “What the Heck is HTML++ ? Salvation for the Souls of
Webmasters.” Technical Report TUV-1841-95-06. Distributed Systems
Group, Technical University of Vienna, Vienna, Austria.
[http://www.infosys.tuwien.ac.at/reports/repository/TUV-1841-95-06.ps]

Bentley, R.; W.Appelt; U.Busbach; E.Hinrichs; D.Kerr; S.Sikkel; J.Trevor;
and G.Woetzel. 1997. “Basic Support for Cooperative Work on the World
Wide Web”. In Proceedings of the International Journal of Human-
Computer Studies: Special issue on Innovative Applications of the World
Wide Web, Academic Press, to appear.

Berners-Lee, T.; R.Cailliau; A.Loutonen; H.F.Nielsen; and A.Secret. 1994.
“The World-Wide Web.” Communications of the ACM 37, no. 8 (Aug.): 76-
82.

Boehm B. and W.Scherlis. 1992. “Megaprogramming”. In Proceedings of
Software Technology Conference DARPA. ARPA.

Bowman M; P.B.Danzig; D.R.Hardy; U.Manber; M.F.Schwartz; and
D.P.Wessels. 1994. “Harvest: A Scalable, Customizable Discovery and Access
System.” Technical Report CU-CS-732-94. Department of Computer Science,
University of Colorado, Boulder, (Aug.).

Brooks, F. 1996. The Mythical Man-Month. Addison-Wesley, Reading, MA.

Brown, A. (editor). 1996. Component-Based Software Engineering. IEEE
Computer Society Press, Los Alamitos, CA.

Buschmann, F.; R. Meunier; H.Rohnert; P.Sommerlad; and M.Stal. 1996.
Pattern-Oriented Software Architecture - A System of Patterns. John Wiley
and Sons, NY.

Carnegie Mellon University. 1997. ABLE - Architecture Based Languages
and Environments.
[http://www.cs.cmu.edu/afs/cs.cmu.edu/project/able/www/able.html]

Carnegie Mellon University, Software Engineering Institute. 1997.
Architecture Description Languages.
[http://www.sei.cmu.edu/~architecture/adl.html]

Cluts, N.W. 1997. The Microsoft Active Platform. Microsoft Corporation.
[http://www.microsoft.com/workshop/prog/aplatfrm/platform-f.htm]

Coleman, D. and R.Khanna. 1995. Groupware : Technology and
Applications. Prentice-Hall, Englewood Cliffs, N.J.

Conklin, J. 1987. "A Survey of Hypertext." Technical report MCC STP-356-
86.

EarthWeb Inc. 1997. Gamelan - the official directory for Java.
[http://www.gamelan.com/]

Eixelsberger, W; L.Warholm; R.Klösch; and H.Gall; "Software Architecture
Recovery of Embedded Software." In Proceedings of the International
Conference on Software Engineering 1997 (Boston, MA, May 17-23, 1997),
to appear.

Electronic Industries Association 1995. CASE Data Interchange Format.
[http://www.cdif.org/]

Gall, H; M.Jazayeri; R.Klösch; W.Lugmayr; and G.Trausmuth. 1996.
"Architecture Recovery in ARES." In Proceedings of the Second
International Software Architecture Workshop and International Workshop
on Multiple Perspectives in Software Development 1996. SIGSOFT 96,
ACM.

Goodman, D. 1997. Official Marimba Guide to Bongo. sams.net.

Kruchten, P. 1995. "The 4+1 View Model of Architecture." IEEE Software
12, no.6 (Nov.): 42-51.

Lane, T.G. 1990. "Studying Software Architecture through Design Spaces and
Rules." Technical report CMU/SEI-90-TR-18. Carnegie Mellon University.

Lemay, L. 1997. Official Marimba Guide to Castanet. sams.net.

McCool, R. 1994. The Common Gateway Interface.
[http://hoohoo.ncsa.uiuc.edu/docs/cgi/overview.html].

Mendoza, N. and J.Kramer. 1997. "Requirements for an Effective
Architecture Recovery Framework." In Proceedings of the Second
International Software Architecture Workshop and International Workshop
on Multiple Perspectives in Software Development 1996. SIGSOFT 96,
ACM.

Microsoft Corp. 1997. FrontPage. [http://www.microsoft.com/frontpage/]

Netscape Communications Corporation. 1997. Inline Plug-Ins.
[http://home.netscape.com/comprod/products/navigator/version_2.0/plugins/in
dex.html]

Netscape Communications Corporation. 1997. JavaScript Guide.
[http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html]

Oracle Corporation. 1997. Oracle WebServer.
[http://www.oracle.com/products/websystem/webserver/index.html]

PointCast Inc. 1997. What is the PointCast Network?
[http://www.pointcast.com/whatis.html]

Ran, A. and J.Kuusela. 1996. "Design Decision Trees." In Proceedings of the
Eight International Workshop on Software Specification and Design.
Schloss Velen Germany. IEEE Computer Society Press, 1996.

Reina, M. 1997. The Grapher Package. Distributed Systems Group,
Technical University of Vienna, Vienna, Austria.
[http://www.infosys.tuwien.ac.at/~reina/vstl/grapher/grapher.html]

Shaw, M. and D.Garlan. 1996. Software Architecture - Perspectives on an
Emerging Discipline. Prentice-Hall, Upper Saddle River, N.J.

Sun Microsystems Inc. 1997. The JDBC(tm) Database Access API.
[http://splash.javasoft.com/jdbc/]

BIOGRAPHY

8

Juan C. Dueñas received his Ph.D. degree on
Telecommunications Engineering with Special Award from
the Universidad Politécnica de Madrid (Spain) in 1994, and
now works there as an assistant professor. His thesis
received also the special Award from the Spanish
Telecommunication Engineers Official College. He has
participated in several european projects on the application
of concurrent engineering to software architectures and
development.

Manfred Hauswirth is a Ph.D. student at the Distributed
Systems Group at the Technical University of Vienna,
Austria. He received his M.Sc. in Computer Science in 1994
from Technical University of Vienna. His current research
focus is on WWW, Java, and information acquistition by
subscription. His research interests include distributed
information systems, distributed information management,
resource discovery, and programming languages.

