
Dynamically Self-Organizing Sensors as Virtual In-Network Aggregators and
Query Processors in Mobile Ad-Hoc Sensor Databases∗

Aris Ouksel
Department of Information and Decision Science

University of Illinois at Chicago
aris@uic.edu

Lin Xiao
Department of Computer Science
University of Illinois at Chicago

lxiao5@uic.edu
Manfred Hauswirth

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway, Ireland

manfred.hauswirth@deri.org

Abstract

Ef�cient in-networking processing of higher-level query
types such as range and aggregate queries are a major chal-
lenge in distributed, data-intensive, and sensor networks.
In this paper we propose a novel data management infras-
tructure based on multidimensional indexing techniques to
support fast aggregate and non-aggregate query process-
ing. Our approach applies to stationary and mobile en-
vironments and is based on an overlay structure, called
AGGINDEX. AGGINDEX organizes the sensors in a tree
structure of virtual processors which continuously compute
both precise and approximate aggregations. Our experi-
ments show that AGGINDEX provides a signi�cant gain in
latency and message costs over gossip-based aggregation
and spanning-tree based aggregation techniques as used by
TAG and Cougar.

1. Introduction

Recent advances in sensor technologies enable a new
generation of massive-scale, self-organizing, wireless sen-
sor networks (WSNs), consisting of small low-cost, low-
power, and easy-to-deploy sensors. These networks can be
applied in a wide spectrum of commercial, environmental,
health care and military application areas. As these net-
works are being deployed at larger scales and incorporate
more complex functionalities, the volume of data sensed,
stored, and queried increases signi�cantly. These large
amounts of data along with the need to provide support
for global network monitoring and continuous collection of
∗This work was partially sponsored by NSF grant IIS-0326284.

aggregated application data makes range and aggregation
queries the two most frequent query types in WSNs to re-
duce latency and message costs. Therefore, distributed in-
dexing mechanisms, which cluster query answers to smaller
areas of the physical space by preserving data locality, sup-
port the major goals of data access ef�ciency and low en-
ergy consumption, which are key requirements in sensor
networks.

The practical requirements and constraints under which
query processing in mobile ad-hoc sensor databases has to
be performed is best illustrated by a typical application sce-
nario, for example in a modern health care facility: Here,
vital parameters of patients such as pulse, blood pressure,
and body temperature could be monitored through sensors
attached to the bodies of patients. As patients physically
move in the health care facility, sensors are mobile and
form dynamically organized sensor networks. Sensors can
also track the daily activities of patients and may also be
deployed in rooms to collect environmental conditions at
the health care facility such as humidity, noise level, and
air temperature. All measured data are recorded as events,
which are then stored within the network.

Sensor networks deployed in a such a scenario enable
the continuous monitoring of patients without actually con-
straining them physically while offering the possibility of
immediate reaction in case of an emergency. Health care
staff may simply be interested in �nding out a patient's lo-
cation or a doctor may request �the medical records of all
cancer patients whose body temperature is above 98 degrees
today� or �the maximum and average body temperatures for
each resident in the West Wing�. A wireless mobile sensor
network with database capabilities will transparently pro-
cess such queries and return the answers regardless of pa-

1



tient's location or availability. This can signi�cantly reduce
the costs in health care while being bene�cial to patients
as well. With such data being gathered, stored and aggre-
gated in-network, regular reports could be sent to hospital
staffs automatically. Also, alarm noti�cations in emergency
situations, such as when a resident suffers a sudden heart
attack, can be sent without delay, thus increasing his chance
for survival and recovery.

From a data processing side such scenarios require ef-
�cient data management and query processing techniques
which support point, range and aggregate queries. Ef�-
ciency and scalability of the query processing both in terms
of number of sensors and amount of data while minimizing
query latency has to be guaranteed as well. Typical queries
to be expected in a health care scenario include:

• SELECT pulse-rate FROM pulse-sensors
WHERE resident-id = 998 (point query)

• SELECT resident-id FROM
complex-readings WHERE systolic >
135 and body temperature IN (98,
102) (range query)

• SELECT COUNT(*), AVG(pulse-rate)
FROM complex-readings WHERE
diastolic > 100 (aggregate query)

Such queries are also representative for many other ap-
plication domains and serve as good overall test cases. Ag-
gregation in traditional database approaches is done at the
back-end at one or a few centralized servers after collecting
all data from the network. This communication-intensive
approach is not feasible in large-scale, data-intensive sesnor
networks due to power constraints of sensors. In-network
aggregation [17, 30, 29] and group-aware network con�g-
uration methods [24], which calculate partial results along
intermediate nodes on query routing paths, perform much
better in such settings and can decrease signi�cantly energy
consumption of sensors by reducing the transmission and
computation costs.

When an aggregate query is issued in TinyDB [17] or
Cougar [29], a routing tree rooted in the query issueing
node will be constructed to perform in-network aggregation
along the tree. According to the aggregation mechanism of
TAG [17] which is implemented on top of TinyDB, this tree
is constructed dynamically by �ooding the network from
the source node and a different tree is constructed each time
a query is issued from a different source node. Clearly, these
aggregation processing mechanisms suffer from constantly
�ooding the network when queries are issued by different
nodes. Also, since each sensor can store data of any pos-
sible value, searching for records with a speci�c value or
value range requires exhaustive search of the network, i.e.,
each node in the network.

The infrastructure proposed in this paper tries to avoid
these drawbacks and organizes the physical sensor network
by partitioning the data space into subspaces and assigning
each subspace to a sensor, which then takes over the re-
sponsibility of managing data belonging to this subspace.
For routing purposes a simple overlay called AGGINDEX
is constructed. The construction is based on the data space
partitioning among sensor nodes. An AGGINDEX tree is
shared by all aggregate queries. Updates to the AGGIN-
DEX tree and to data space partitions, which may occur
due to sensors going online/of�ine or and mobility of sen-
sors, are always local, i.e., only affect one to a few nodes.
The AGGINDEX tree supports fast aggregation propaga-
tion and computation along paths while concentrating query
searches to affected subareas in the network, thereby reduc-
ing energy consumption and latency. It also enables inter-
mediate result caching for re-use by future queries. Addi-
tionally, AGGINDEX offers summary keeping and query
caching, methods which further improve the performance
of aggregate query processing. Analysis and experiments
presented in this paper show that our approach signi�cantly
reduces query routing cost and latency compared to other
approaches, without incurring signi�cant overhead for con-
structing and maintaining the overlay. Our infrastructure
also provides ef�cient approximate aggregate query pro-
cessing solutions by having sensors estimate values stored
in its local storage according to the data space partitioning
without examination of each data record. This signi�cantly
reduces the latency and local processing cost for answering
aggregate queries.

The paper is organized as follows: Section 2 presents re-
lated works. Section 3 covers de�nitions and assumptions,
setting up the background for following sections. Section 4
proposes the concept of AGGINDEX tree and its construc-
tion methods in static or mobile environments. Further on,
methods for both precise and approximate data aggrega-
tion using the AGGINDEX tree are presented and analyzed.
Section 5 presents non-aggregate query routing and pro-
cessing techniques. Section 6 covers our simulation system
and performances of query processing and aggregation per-
formance through comparison with other approaches. The
paper is concluded in Section 7 on future works.

2. Related Works

Aggregation has been studied extensively in the database
community [12]. Madden et al. [17] propose a generic
framework, called TAG, to support aggregate in-network
queries by constructing spanning trees rooted at prede�ned
base-stations (�sinks�). Query evaluation in TAG is done
in two steps: In the distribution phase, a query is �ooded
from the requesting node into the network and constructs
an aggregation spanning tree. In the collection phase, inter-



mediate results are propagated back along the tree by child-
parent messages. A node may select more than one parent
at a higher level, in which case the intermediate result is
sent to each of the parents. Spanning trees are also used
in Cougar [29] and similar approaches are also described
in [30]. [24] introduces the TiNA framework which can
exploit pre-existing aggregation schemes such as TAG, to
reduce energy consumption in the context of in-network ag-
gregation.

Kempe et al. [15] propose a gossip-style protocol to com-
pute aggregations in P2P networks. Each node assigns a
non-negative probability to its neighbors with the sum of
all probabilities being equal to 1. Then in the next round
it sends each neighbor its share of the results and probabil-
ity according to the probability assigned. However, conver-
gence of gossip-style protocols in general is very slow, as
is shown in [6] to require at least O(n1.5logn) transmission
even for optimized gossip protocols.

For robustness and scalability the concept of sketches is
applied frequently [12, 10, 11, 2]. For example, [4] uses
sketches to compute approximate duplicate-sensitive aggre-
gates, such as COUNT or AVERAGE, across faulty sensors.
The basic idea is to use a hash function to map the value of
a data tuple into the appropriate bit of the sketch. Query
computation consists of two steps: (i) �ooding across the
network having each node computing its level and (ii) each
node constructing its own local sketch and broadcasting it
to the next higher level. The steps are repeated in each it-
eration until the sink gets the �nal result. Nath and Gib-
bons [18] introduced synopsis diffusion, a concept similar
to sketches.

Multidimensional indexing structures have been exten-
sively studied in the past twenty years. A literature survey
can be found in [7]. Recently, researchers have revisited
the indexing problem in a distributed environment �rst in
P2P networks, such as CAN [21], CHORD [25], P-Grid [1],
or [20], and then in wireless sensor networks with struc-
tures such as GHT [22] , DIM [16], or our previous works
on localization-integrated indexing of mobile ad-hoc sen-
sor networks [28, 27]. In wireless sensor networks, sensors
are distributed over the physical space as ad-hoc and self-
organizing agents. An appropriate indexing structure must
emerge from the interactions of sensors and be adaptive to
the topology changes caused by sensors online/of�ine or be-
ing mobile.

DIFS [3] is an indexing structure that sets up a multi-
rooted quad-tree when partitioning the data space. Each
node has 2l parents depending on its level l in the tree.
Each leaf node stores the full data range of an attribute.
Each intermediate node stores a portion of its children's
range. For a node, all its parents cover exactly its data
range. Meanwhile, a parent covers all its children's data his-
tograms. Thus, a node closer to the root of the tree will have

more limited data range but broader data histogram. Multi-
resolution storage techniques are also exploited in DIMEN-
SION [8] and [9], which use in-network wavelet-based
summarization and progressive aging of summaries to sup-
port long-term querying in storage and communication-
constrained networks. The goal is to enable highly ef�cient
drill-down search over summaries and ef�cient use of net-
work storage capacity through load-balancing and progres-
sive aging of summaries.

[26] proposes a two-tier data storage strategy for an-
swering precision-constraint approximate queries by keep-
ing a high-precision version of data in the sensor and a low-
precision version of data in the base station. A query with a
required precision can be answered at the base station if the
required precision can be met by the data in the base station.
A refreshment policy keeps the base stations updated with
the latest sensor data.

Also, several protocols have been proposed for monitor-
ing the network state including node failures, computing
the coverage and exposure bounds, energy supply deple-
tion, and topology discovery [30]. Deshpande and Mad-
den [5] describe a centralized probabilistic approach where
approximations are computed with probabilistic con�dence
intervals at sensors. Using the summary maintained by the
individual sensors, a statistical distribution is built hierar-
chically. Hellerstein et al. propose an online aggregation
interface [13], which permits users to observe the progress
of their queries and control their execution on-the-�y. These
various approaches, as well as sketches described earlier,
are complementary to our work and can be integrated into
our overall infrastructure.

3. Data space partitioning

The basic idea of indexing is to partition a d-dimensional
data space into a �nite number of subspaces which cover
the search space, and then assign sensors to each of the sub-
spaces to manage data and answer queries relevant for their
subspaces. The goal of indexing is to obtain ef�ciently op-
timal storage and search cost for data in the network.

Our approach described maps the data space partitions
space onto the physical space of sensor locations. This ap-
proach is proven to be able to optimize search cost of mul-
tidimensional range queries by its locality preserving capa-
bility [19, 28, 16]. Alternative approaches map data space
partitions onto a virtual coordinate space of sensors. For
simplicity, we assume that the sensor network environment
covers a bounded two-dimensional rectangular area as the
extension to three dimensions is straightforward.

Suppose a relation R has attributes R1, R2, · · · , Rk, each
Ri taking its value from a bounded but not necessarily �-
nite domain Di. An index is to be built along attributes
R1, · · · , Rd of relation R, called index attributes.



Let the d-dimensional normalized data space Ud =
[0, 1)d be partitioned into subspaces of hyper-rectangles de-
�ned as data regions. Each data region is uniquely repre-
sented by an identi�er r-id, a binary sequence with length
l: i1, i2, · · · , il. l is also called the level of a data region. A
split along one of its dimensions divides a data region into
two equal data regions, whose r-ids are obtained by append-
ing 0 or 1 to the binary representation of the current r-id.

The key of a data tuple t = (t1, t2, · · · , td) of relation R,
is calculated by interweaving the bits of ti's binary repre-
sentation ti,1ti,2 · · · ti,max:

k = k1k2 · · · kd∗max = t1,1t2,1 · · · td,1t1,2 · · · td,max (1)

A sensor obtains an r-id when it joins the network. Un-
like intrinsic properties such as permanently assigned MAC
addresses or permanent-IDs, r-ids are assigned to sensors
according to sensor locations and may change as a result
of sensor movement. Suppose a sensor n is assigned an r-
id I . All data tuples whose keys are a pre�x of I are now
mapped to sensor n. Sensor n is responsible for the storage,
maintenance, and query answering of those tuples.

Figure 1. R-id Tree

To illustrated this strategy we give a brief example: Let
us assume a 2-dimensional use case where the two do-
mains D1 and D2 are pulse rate (40 beats/minute � 160
beats/minute) and systolic blood pressure (70mm Hg �
230mm Hg). A data record (130, 190) will be normalized
to ((130 − 40)/(160 − 40), (190 − 70)/(230 − 70)) =
(90/120, 120/160) = (0.75, 0.75), which is represented in
binary form by (0.11, 0.11). The key of t, denoted as k(t)
and calculated by interweaving the bits cyclically from each
dimension, is 1111. In Figure 1, this data record is mapped
to data region 1111.

The data space partition can be represented by a virtual
tree's decomposition as shown in Figure 1, referred to as the
real identi�er tree, or the r-id tree. Starting from the root,
a split induces two new r-ids as leaves, which become chil-
dren of the r-id that has just split. One of them remains at
the splitting sensor, while the other is assigned to the new
node. The binary decomposition process induces a recur-
sive partitioning of the data space into r-ids of data regions

represented by the leaves of the tree. The partitioning of the
data space stops when a data region has exactly one sensor.
A sensor then acquires the r-id of that data region. In a fully
specialized tree as shown in Figure 1 each sensor's current
r-id is represented by a leaf node in the r-id tree. Interme-
diate nodes are not represented by a physical node (sensor).

Sensors become neighbors if they can communicate di-
rectly. Each node n maintains an up-to-date r-id list of its
neighbors. A buddy node of identi�er i is de�ned as a node
which shares the longest common pre�x with i in binary
form. Before a node turns itself off, or leaves its current
area, its storage will be transferred to its buddy node. If
the buddy node discovers that the identi�ers of two data re-
gions only differ in the last bit, they will be merged into a
new data region. For example, a merge of data regions 1110
and 1111 produces a new data region 111. Data mapped to
a hole in the data space not covered by any sensor will also
be stored at the buddy node.

More details of this approach for organizing an indexing
structure can be found in [28].

Before describing our approach in the next section, we
make the following model assumptions: The wireless sen-
sor network is connected all the time regardless of sensor
mobility and power shift. This is necessary for the validity
of query routing. The case of a disconnected network is be-
yond the scope of this paper. Each sensor is able to share
its identi�er with its neighbors, but only when requested.
In the sequel, sensor and node are used interchangeably if
there is no ambiguity.

4. Aggregation using the AGGINDEX tree

The AGGINDEX tree is a tree overlay where r-ids are
also represented by leaf nodes. But it differs from the r-id
tree in that an AGGINDEX tree is a rooted tree with internal
nodes as virtual identi�ers assigned to sensors, while a r-
id tree is not a real tree because its internal nodes are not
mapped to sensors.

Figure 2. AGGINDEX Tree

In an AGGINDEX tree, some sensors will have multi-
ple identi�ers, one being the so-called real identi�er, or r-id
which de�nes the data partition stored at this sensor. The



other possibly existing identi�ers are historical identi�ers
which represent the node's evolution in terms of the data
space partitioning process. We call these identi�ers a node's
virtual identi�ers or v-id here. Virtual identi�ers enable the
assignment of responsibilities such as sub-result collection
from its sub-tree for aggregate query, data summary main-
tenance for its sub-tree, and query result caching. As an
example, a sensor node with a r-id 01011 may be assigned
a v-id 010. Although this sensor only manages storage and
retrieval of data mapped to data region 01011, it was given
the additional responsibility of maintaining the data sum-
mary of its sub-tree for the virtual data region 010 by the
assignment of v-id 010.

4.1. History approach to construct an AG-
GINDEX tree

In the static case where the network topology and node
reachability are stable we can construct and maintain an
AGGINDEX tree by using history information of the space
partitioning process. The resulting AGGINDEX tree is a
by-product of data space partitioning without incurring sig-
ni�cant extra cost for setup and update.

The AGGINDEX tree is updated when updates to the
indexing structure occur. Each sensor node stores its r-id
and a list of v-ids locally. Every id has a parent in the tree.
The parent of an identi�er of length l's is de�ned as a v-id
whose binary presentation is a pre�x of the r-id with length
of l-1.

Two types of updates can occur: a �merge� or a �split.�
When splitting, the r-id is assigned as already described in
the previous section. Additionally, the old r-id will be added
as a v-id to the node's v-id list and the parent of the new r-id
is set to the the old r-id. In the case of merging, the r-id is
set to a new r-id according to the partition merging process
de�ned in the previous section and the old r-id is deleted
from the v-id list.

This can be exempli�ed in Figure 2. Sensors are repre-
sented by tree nodes and their identi�ers are given next to
them. In fact, the topology in Figure 2 is the same as in
Figure 1. A tree node with r-id 000 is managing data region
000. It has a parent with r-id 001 and v-id 00. Let us a as-
sume a new sensor node m joins, and node n with r-id 1111
splits its data region 1111 into a data region 11110 managed
by itself and 11111 to be managed by m. The AGGINDEX
tree is updated by adding n's old r-id 1111 to its v-id list
and making n the parent of m.

The height of an AGGINDEX tree is O(logn) in the av-
erage case, because the tree height is determined by the
length of the longest r-id in the network and the average
r-id length is O(log2n). However, in the worst case if the
node distribution is skewed, the tree height could signi�-
cantly increase.

In a mobile environment where the topology is not sta-
ble, constructing an AGGINDEX tree is more complicated.
For example, let us assume a node with v-id 110 in Fig-
ure 2 moves east and eventually loses connection with its
parent node of v-id 100. Node 110 was responsible for the
virtual data region 11 before its movement. Since partial ag-
gregation results for virtual data region 11 may need to be
propagated along the tree to the virtual data region 1 and the
data region 1 is managed by the parent node of v-id 100, the
AGGINDEX tree becomes disconnected although the net-
work is still connected through other alternate paths. This
situation requires a further maintenance strategy described
in the next section.

4.2. Dynamic update approach for mobile
environments

Figure 3. Dynamic Update in the AGGINDEX
tree

When a sensor detects that the connection with its parent
node in the index tree has been lost, it sends a re-adjust
message with its own information including ids and the lost
parent's id to its own children. Figure 3 shows an example.

In the example of Figure 3, the node with r-id 110 has
lost its connection with its parent with r-id 100. Thus it
initiates a re-adjust message reAdjust(〈n.info, 110,{11}〉,
〈p.info, 100, 1〉) containing its own r-id 110, v-id 11, and
lost parent 100's information. Let us assume the message
�rst arrives at a child with r-id 11110. Node 11110 does
not have a connection to 100, so it forwards the message to
its children, i.e., node 1110 which in turn forwards it to node
101 which actually has a connection to node 100 at its new



position. Since 101 is a child of 100, node 1110 has found
a new connection to 100 and sends a �reconnect� message
back along the routing path. Upon receiving the �recon-
nect� message, each node will mark the message sender as
its new parent node. Nodes on the path will adjust their v-
ids accordingly. The adjustment result is shown in Figure 3
by arrows pointing from children to parents.

Figure 4 shows the corresponding pseudo-code. Update
is called when the connection to the parent is lost. Each
node keeps a neighbor-list with all its neighbors' ids and
parent r-id. When a parent node cannot be located within a
certain TTL, the node one level up in the tree from the lost
parent will temporarily serve as the parent.

aggindexDynamic()
�����������������������-
if (parentconnection == unvailable)
{initiate message reAdjustTree(rid, vidlist, lostparentid) and send
it to all children;}
While (time < TTL) {
Upon receiving a re-connect message from node m:
parent = m; Update vidlist.

Upon receiving reAdjustTree message from node m:
check if ((parentlostid appears any of its neighbors k) or (parent-
lostid belongs to any neighbor k's parent))
Yes: send reconnect(self) to m; parent = k; Update vidlist;
No: forward reAdjustTree message to its children attaching n's
own information {rid, vidlist}
}
parent ← oldparentid.parent;

Figure 4. Dynamic index tree re-adjustment

Clearly, the history approach is ef�cient for static envi-
ronments by incurring minimal additional cost. When ap-
plied to the mobile environment, however, it performs sub-
optimally. This is because frequent topology changes in
mobile environments will outdate history data rapidly. The
tree can become disconnected when a node moves away
from its parent. In a mobile environment, the history ap-
proach must be complemented with dynamic updates to
maintain the tree when a disconnection from parent node
is discovered by a sensor. The dynamic update method in-
curs more message cost per update compared to the history
method, but updates are still local thus keeping the overhead
small.

4.3. Efficient in-network aggregation

In this section we will discuss how the AGGINDEX
tree can be utilized to ef�ciently answer aggregate queries.
TAG [17] lists the following common attributes when clas-
sifying aggregation in sensor networks: (1) Duplicate sensi-
tivity, which speci�es whether an aggregate function will re-

turn the same result when there are duplicate values. Exam-
ples are MEDIAN, AVERAGE, and COUNT. MIN, MAX,
and COUNT DISTINCT are, on the contrary, insensitive;
(2) exemplary/summary: Exemplary aggregations (such as
MIN, MAX, and MEDIAN) always return a representa-
tive value while summary aggregates (such as AVERAGE
and COUNT) perform some calculation over the entire data
space and return the calculated value; (3) monotonic aggre-
gates, allow early testing of predicates in the network, for
example, MAX and MIN. Signi�cant savings in the overall
number of messages sent through the network is possible
by knowing in advance the location of a node or a set of
nodes that hold such values. (4) Partial state requirements.
Aggregates such as SUM and COUNT require partial state
records that are the same size as the �nal aggregate. The
AVERAGE function requires a partial state records contain-
ing two values, i.e., both the SUM and the COUNT. Types
of aggregate queries including MIN, MAX, SUM, AVER-
AGE, COUNT are discussed next in this paper.

For monotonic aggregate operators such as MIN and
MAX, the aggregate value is mapped to the sensor with the
smallest or largest r-id within the speci�ed query data range
in our infrastructure, because the intrinsic characteristics of
the indexing structure prescribes that the smallest or largest
value is stored at a sensor with the smallest or largest r-id.
Processing these aggregations can be reduced to search in
the one sensor that �ts this criteria. Query routing can be
treated in the same way as single point and range queries in
the following section, without relying on the AGGINDEX
tree. This is because monotonic aggregates do not require
partial state. Signi�cant saving of energy is possible be-
cause of the early knowledge of result-holding sensors.

The AGGINDEX tree is exploited for processing non-
monotonic aggregate operators such as SUM, AVERAGE
and COUNT. When an aggregate query is issued, the
boundary of the data set to be examined for the aggregate
computation is speci�ed in the query key. Query key, de-
noted qk, is the key calculated from a query q to resolve
point and range queries. When resolving a point query, qk is
calculated by interweaving the bits of the normalized query
attributes. When resolving a range query, the query key is
calculated as the common pre�x of query keys covered by
the spectrum of attributes to be searched. A query q then is
routed towards all sensors whose r-ids are pre�x of qk(q).

Each query key qk is mapped uniquely to a tree node n
in the AGGINDEX tree where the binary representation of
qk is equal to or contains one of n's v-ids or r-id. This tree
node is referred to as the aggregate root for query q. Only
the sub-tree from the aggregation root will contain relevant
data queried by q.

Processing of a non-monotonic aggregate query consists
of the following steps: First, the query issuer s generates
a query q including qk and sends out q. Second, query q



is transmitted in the network by routing methods such as
geographic routing toward its aggregate root. When a node
r discovers a match between one of its ids and qk(q) on
receiving q, it declares itself aggregation root of q and adds
its own information to q. Third, r sends out q along its sub-
tree in the AGGINDEX tree. q will be propagated down
the sub-tree until leaves are reached. Nodes will examine
their local storage and perform partial result aggregation if
possible. The partial result set is then propagated up along
the tree to its parent node. Finally, nodes of each level in the
sub-tree await information from all its children, combine the
result, and sent it up to the next level. The aggregate root
r, on receiving and the complete result, will post-process
the aggregation result and route a query answer back to the
query issuer using the same mechanism for query routing
described earlier.

4.4. Approximate Aggregations

Madden et al. [5] propose a centralized scheme to sup-
port probabilistic query processing using approximations
with probabilistic intervals of con�dence. Interestingly, we
observe that the AGGINDEX tree somewhat captures the
goal in that non-monotonic aggregate queries such as SUM
can be approximated along the tree without examining raw
data stored at sensors.

In many scenarios, exact aggregate computations may
not be necessary and are often too costly to be performed
frequently. Approximate answers can reduce processing
time and energy consumption signi�cantly. Since a r-id
captures the data range mapped to it, it can be used to an-
swer approximate queries by just estimating the average
value stored at the sensor or the number of records stored
at the sensor.

Let the number of data items stored at a sensor n be c(n).
As discussed earlier, query q is directed to the aggregate
root. The value of all tuples stored at each sensor can be ap-
proximated by the middle point of each sensor's data range
indicated by r-id or through a histogram. [28] provides the
mathematical details for this calculation.

A partial aggregation result is approximated with the
middle point value and c(n), and then propagated back
along the tree. For example, with SUM, the partial result at
n is obtained by multiplying the middle point value and c(n)
and adding it to the partial result obtained from n's sub-tree.
Clearly, approximate aggregation can respond very quickly
to queries. It is especially bene�cial if time and energy re-
quirements are very stringent and accuracy can be sacri�ced
a little bit. Experiments show high accuracy can be achieved
by approximate queries in our infrastructure.

5. Non-aggregate query processing

In this section all pre�x operations on keys refer to to the
binary representation of the keys. Upon receiving a point
query, each node checks whether its current r-id is a pre�x
of the query key. If it is the case, a query match may be
found from searching the data currently stored at this node.
When resolving a range query, the query key is calculated
as the common pre�x of data keys within the query's range.
A query q is routed towards all sensors whose r-ids are a
pre�x of the query key qk(q). Upon receiving a range query,
a node checks if either of the following applies: (1) Its r-id
is a pre�x of the query key; (2) the query key is a pre�x of
the node's r-id. Either condition is possible because a query
may cover a broad range of data and may have a query key
shorter than a sensor's r-id. Conversely, it may also cover
only a narrow range of data and has a query key longer than
a sensor's r-id. In either case sensors satisfying this criteria
can hold potential results and will be searched for tuples
that match the speci�ed query range.

Each node with a partial query result will deliver those
data in a reply message back to the destination speci�ed in
query q. One simple but more costly way to assemble the
�nal query result is to do it at the destination node after it
has received all individual partial results. A more ef�cient
strategy is to aggregate or assemble the result in-network as
described earlier.

Query routing works as follows: The routing function
queryrouting is invoked when a node n receives a query
q. nexthop is invoked when n needs to determines which
of n's neighbors q will be forwarded to. The query type
is �multi� when q is a multidimensional range query and
�single� when q is a point query. For a range query qk is
computed as the common pre�x of the enclosing values of
the range query de�ned as (lowerrange, upperrange). The
algorithms for both functions are described in pseudo-code
below.

Intermediate nodes are nodes whose r-ids do not share
any pre�x with the query key. Those nodes need not be
searched. When forwarding a query, a node n calculates the
Euclidean distance δ(ni, q) between each neighbor ni's r-id
and qk(q) and the node with the shortest Euclidean distance
δ(ni, q): δ(ni, q) < δ(n, q) is chosen as the next hop. If a
node has multiple neighbors within the range of qk, each
neighbor will be forwarded with q. If a node has multiple
neighbors of the same distance to qk(q), the query is for-
warded to a randomly chosen neighbor.

If at any time, a closer node to the query key is not avail-
able among a node n's neighbors, an iterative breadth-�rst-
search (BFS) is performed to discover a closer node to the
destination. This is done as follows: Node n sends a Itera-
tiveBFS message which includes q, its own information in-
cluding its r-id, and an iteration number to all its neighbors.



���������������������-
queryrouting(n, Queryobject q)
���������������������-
next = nexthop(n, q), forward q to next.
if (q.type = �multi�)
qk = multikey = common pre�x of q's enclosing values:
(lowerrange, upperrange)
else if (q.type = �single�)
qk = singlekey(q)

if ((n.id is a pre�x of qk or qk is a pre�x of n.r − id) and q.type
= �multi�)
search in n's storage for tuples within (lowerrange, upperrange)
retrieve all matching tuples → result
else if (n.id is a pre�x of qk or qk is a pre�x of n.r−id and q.type
= �single�)
search in n's storage for tuples matching the queried value, retrieve
all matching tuples → result

return (result)
���������������������-
nexthop(n, Queryobject q)
���������������������
For each neighbor ni of n,
δ(ni, q) = sqrt((ni.r− idx− q.qkx)2 +(ni.r− idy − q.qky)2)
next={{ni} | δ(ni, q) = min(δ(nj , q), δ(n, q))}
if next != n, return(next)
else
{isCloser = false; i = 1
while (!isCloser)
{send message iterativeBFS(q,n,i) to all neighbors ni of n
if (one isCloserBFS(q, ni, i) messages received from ni has the
value �negative�) isCloser = true; i++ }
} return(ni)

Figure 5. queryrouting and nexthop algorithms

On receiving the message each neighbor decides if any of
its own neighbors is closer to the query key than node n.
If this is the case, the node will send a positive reply mes-
sage isCloserBFS including its own information including
r-id and the iteration number back to n. Otherwise the node
will send a negative reply message to n. Once a closer node
is discovered, the iterative-BFS process terminates and q
will be forwarded to the closer node. Otherwise each node
reached in the current iteration will start the next iteration
by repeating the above steps. Figure 6 shows an example of
a node n, which on receiving an incoming query q, starts an
iterative-BFS discovery when a closer node cannot be found
among its neighbors.

If no node is found matching a query key, i.e., the query
is directed toward a hole in the data space not covered by
any sensor, the query will return an empty result.

An alternative to iterative-BFS routing would be geo-
graphic parameter routing [14], which was introduced in
GPSR. While our scheme can incorporate GPSR as the rout-
ing protocol, GPSR has some potential problems when ap-

plied to the situation of location-aware indexing where loca-
tion information is likely to be imprecise [28]. GPSR uses
greedy forwarding to forward a packet to a neighbor geo-
graphically closest to the destination. A neighbor to receive
a query in the routing process is required to be closer than
the node itself. If no such neighbor node is found, GPSR
uses perimeter routing to route around the perimeter of the
region until it discovers a node that is closer to the desti-
nation. However, perimeter routing works only on planar
graphs, i.e., graphs with no crossing edges, generated from
the current network graph by removing edges. Because of
GPSR's reliance on correct planarization of the network, it
is likely to suffer from many errors as the correctness of pla-
narization is impacted by inexact position information and
incorrect removal of cross edges, as shown in [23]. This has
a negative impact on the robustness of the GPSR routing
protocol. Also in mobile wireless sensor networks, where
changes are frequent and relatively large signal errors oc-
cur, a more robust routing mechanism is necessary to com-
pensate for the effect of imprecise or incorrect localization.
Our approach provides a more robust routing strategy. It
uses greedy forwarding and iterative BFS for packet for-
warding when no closer node is found. Since routing is
composed almost entirely of greedy forwarding [23], we ar-
gue that in denser networks iterative BFS will happen very
infrequently and will return to greedy forwarding within a
few iterations. In sparse networks, our routing algorithm
will perform much better than GPSR in respect to robust-
ness, and in fact will succeed as long as the network is con-
nected. In summary, our routing structure tends to have a
better success rate in both cases without signi�cantly in-
creasing average message cost.

Figure 6. Routing of a query q at node n

The cost to resolve a query consists of: (1) Routing cost
for directing a query to the vicinity of the query destination
and (2) the cost for retrieving matching tuples from all desti-
nations. For (1), the average cost in our case is O(

√
n) hops



for dense networks. For (2), the cost depends on the number
of destination nodes, which is approximately N ∗ qp, plus
local searching cost. Here N refers to the network size and
qp refers to the ratio of the query range over the entire data
range.

6. Experimental evaluation

To evaluate our approach we set up an extensive simula-
tion model. We tested with network sizes varying from 25 to
1,000 with randomly distributed sensors in the network. In
random networks nodes are not necessarily uniformly dis-
tributed. Some areas are denser than other areas, making
the performance evaluation more realistic, unlike the strictly
uniform grid topology often used. For simplicity, our sim-
ulator does not consider certain low-level properties of the
network such as radio contention and the topology is main-
tained by regular �hello� messages every speci�ed interval
to advertise a node's existence among its neighborhood. We
used both static and mobile networks in our experiments.
For mobile networks, node movement is modeled in a dis-
crete way: A random number is generated in each iteration
step to determine the motion direction. A sensor has equal
probability to move toward any of the four directions. This
simulates a slow random walk in 2-D space. Figure 7 shows
a network's topology and space partition (the rectangle en-
closing a node). Our simulator can take network con�g-
urations and queries from user input and facilitates online
observation of the simulation.

The period of time allotted for exchanging messages be-
tween two levels in a tree is called an epoch. The latency
of a query result is dominated by the product of the epoch
duration and the total number of epochs for a query to be
answered since it was issued. By assuming the same epoch
duration for different approaches, our comparison of latency
is dominated by the number of epochs elapsed for a query
to be answered.

We �rst compare our approaches with gossip-based ag-
gregation (GOSSIP) and the class of aggregation techniques
on spanning-trees exempli�ed by TAG and Cougar (TAG).
Query size is de�ned as the percentage of query-related
records over all records. In the uniform case, query size is
proportional to the number of sensors that answer the query.

The bene�t of using our approach over TAG and GOS-
SIP to answer monotonic aggregates such as MAX and MIN
is obvious, because knowing in advance the nodes that hold
such values signi�cantly reduces query propagation cost.
For non-monotonic aggregates such as SUM, we conducted
experiments to compare different approaches with varying
query size in latency and message cost spent per aggregate
query, as shown Figures 8 and 9. Experimental results
shown in these two �gures were conducted with random
networks of 100 nodes where SUM queries were issued by

randomly selected nodes. TAG was implemented with the
original scheme given in [17]. For GOSSIP the uniform
gossip method presented in [15] was used.

Figure 7. Network topology and partition by
simulator. The solid lines represent network
topology, and the rectangles show space par-
titioning.

Figure 8 shows the latency measured in the total number
of epochs elapsed for answering a SUM query. For GOS-
SIP, we calculate the number of epochs elapsed until gos-
siping results fall within 95% of the correct result. Among
these approaches, GOSSIP has the longest latency for all
query sizes. This explains the slow convergence of gossip-
ing protocols. TAG has an almost uniform latency for all
query sizes. When a query covers most of the records in the
network, TAG incurs shorter latency than our AGGINDEX
approach. However, as query size drops, latency of AG-
GINDEX drops signi�cantly and comes close to TAG when
query size is 5% of all records in the network. The latency
of AGGINDEX eventually drops below TAG as query size
further decreases. Also, by incorporating summary keeping
and query caching, the latency for AGGINDEX could be
further reduced.

Figure 9 shows total number of messages sent per SUM
query. Again the number of messages sent by GOSSIP is
calculated as the total number of messages sent until the
gossiping result is within 95% of the correct result. GOS-
SIP incurs exponentially more messages (as shown in the
�gure on the logarithmic Y-axis). This can be explained by



the fact that every node in GOSSIP needs to send a message
at the end of each epoch, while in TAG and AGGINDEX,
for most of the epochs a node simply waits for the message
from its next level without sending a message. Message
cost for query sizes up to 100% of all records is similar for
TAG and AGGINDEX. As the query size decreases, AG-
GINDEX tends to outperform TAG by requiring only 1/

√
n

of the total messages of TAG (Figure 9 shows 1/10 since the
network size is 100).

Figure 8. Latency vs. varying query size

Figure 9. Message cost vs. varying query
size

Next we demonstrate the accuracy of our approximated
scheme for varying network sizes. Figure 10 shows the ac-
curacy of the approximated schemed for uniform data dis-
tribution. Obviously, the approximated scheme can answer
queries very accurately regardless of network sizes.

Figure 11 shows the approximated scheme applied to a
SUM aggregation for an unknown skewed data distribution.
The worst case is simulated by each sensor holding only
upper-bound values of its data range. On average the ap-
proximated result is �uctuating within 10% around the ex-
act result. The worst observed accuracy in the experiments
is 86%, i.e., 14% below the exact result.

We would like to point out that the indexing mechanism
used in our approach requires an insertion cost of O(

√
n)

on average for each tuple, while TAG and GOSSIP are built
on Direct Storage (DS) schemes and store tuples locally.
[16] shows that as long as the ratio of the number of inser-
tions to the number of queries is less than

√
n, our indexing

scheme will out-perform �ooding, which has a O(n) query
cost. TAG requires �ooding to construct the spanning tree
for aggregation processing. Thus our scheme outperforms
TAG when the ratio of the number of insertions of tuples to
the number of queries is less than √n.

Figure 10. Approximation result for uniform
data distribution

Figure 11. Approximation result for unknown
skewed data distribution

7. Conclusions

Non-uniform distribution of sensors or data can ad-
versely affect the indexing structures in performance.
Where sensors are distributed unevenly in the network, the
structure covered in this paper does not provide a balanced
solution. The imbalance can cause some sensors to de-
plete their memory or power much sooner than the others.
Our solution is to design a balanced AGGINDEX tree that



spreads the load among sensors by alternating roles among
sensors.

Another goal is to avoid the possibly long distances of
data transmission from a generating sensor to its storage
sensor and costly retrieval. We are developing a location-
context-aware data management protocol that takes both lo-
cation and context as indexing attributes. Simply treating
location as other context attributes can be inef�cient be-
cause vastly different attribute values generated at the same
place can be stored at sensors far apart from each other.
We use an identi�er system for location-context-aware data
management that reduces the data routing cost by map-
ping the storage place of an event to a larger sub-area and
further decomposing the sub-place according to other at-
tributes containing context information.

References

[1] K. Aberer, P. Cadure-Mauroux, A. Datta, Z. Desptovic,
M. Hauswirth, M. Punceve, and R. Schmit. P-grid: A
self-organizing structured p2p system. SIGMOD RECORD
32(2), 2003.

[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in data stream. 6th
International Workshop on Randomization and Approxima-
tion Techniques, 2002.

[3] B.GreenStein, D.Estrin, R.Govindan, S.Ratnasamy, and
S. Shenker. Difs: A distributed index for features in sen-
sor networks. First IEEE International Workshop on Sensor
Network Protocols and Applications, 2003.

[4] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
aggregation techniques for sensor databases. ICDE, 2004.

[5] A. Deshpande, C. Guestrin, and S. R. Madden. Using prob-
abilistic models for data management in acquisitional envi-
ronments. CIDR, 2005.

[6] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright. Ge-
ographic gossip: Ef�cient aggregation for sensor networks.
IPSN, 2006.

[7] V. Gaede and O. Gnther. Multidimensional access methods.
ACM Computer Surveys (CSUR), 1998.

[8] D. GANESAN, D. ESTRIN, and J. HEIDEMANN. Dimen-
sions: Why do we need a new data handling architecture
for sensor networks? First Workshop on Hot Topics in Net-
works, 2003.

[9] D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, and
R. Govindan. Multi-resolution storage and search in sensor
networks. ACM Transactions on Storage, Volume 1, Issue 3,
2005.

[10] S. Ganguly, M. Garofalakis, and R. Rastogi. Processing
set expressions over continuous update streams. SIGMOD,
2003.

[11] P. B. Gibbons and S. Tirthapura. Estimating simple func-
tions on the union of data streams. ACM Symposium on Par-
allel Algorithms and Architectures, 2001.

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Re-
ichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data

cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. Data Mining and Knowledge
Discovery, 1:29�53.

[13] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggre-
gation. SIGMOD, 1997.

[14] B. Karp and H. T. Kung. Gpsr: Greedy perimeter stateless
routing for wireless networks. Mobicom, 2000.

[15] D. Kempe, A. Dobra, and J. Gehrkey. Gossip-based com-
putation of aggregate information. 44th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2003),
2003.

[16] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-
dimensional range queries in sensor networks, 2003.

[17] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks.
OSDI, 2002.

[18] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Syn-
opsis diffusion for robust aggregation in sensor networks.
SenSys, 2004.

[19] A. M. Ouksel. The interpolation-based grid �le. PODS,
1985.

[20] A. M. Ouksel and G. Moro. G-grid: A class of scalable and
self-organizing data structures for multi-dimensional quer-
ing and content routing in p2p network. Second Inter-
national Workshop on Agents and Peer-to-Peer Computing
(AP2PC'2003), 2003.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. SIG-
COMM, 2001.

[22] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govin-
dan, and S. Shenker. Ght: A geographic hash table for data-
centric storage. First ACM International Workshop on Wire-
less Sensor Networks and Applications, 2002.

[23] K. Seada, A. Helmy, and R. Govindan. On the effect of
localization errors on geographic face routing in sensor net-
works. Third international symposium on Information pro-
cessing in sensor networks POSTER SESSION, 2004.

[24] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysan-
this. Balancing energy ef�ciency and quality of aggregate
data in sensor networks. VLDB, 2004.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. SIGCOMM, 2001.

[26] M. Wu, J. Xu, and X. Tang. Processing precision-
constrained approximate queries in wireless sensor net-
works. MDM, 2006.

[27] L. Xiao and A. Ouksel. Scalable self-conguring integration
of localization and indexing in wireless ad-hoc sensor net-
works. MDM workshop on Mobile Location-Aware Sensor
Networks, 2006.

[28] L. Xiao and A. M. Ouksel. Tolerance of localization im-
precision in ef�ciently managing mobile sensor databases.
MOBIDE, 2005.

[29] Y. Yao and J. Gehrke. Query processing in sensor networks.
First Biennial Conference on Innovative Data Systems Re-
search (CIDR).

[30] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates
for monitoring wireless sensor networks. 1st IEEE Interna-
tional Workshop on Sensor Network Protocols and Applica-
tions, 2003.


